







人教版(2024)八年级下册17.1 勾股定理教课内容课件ppt
展开
这是一份人教版(2024)八年级下册17.1 勾股定理教课内容课件ppt,共23页。PPT课件主要包含了问题1,问题2,问题3,SA+SBSC,猜想命题,拼图1,a2+b2,∴a2+b2c2,拼图2,“勾股定理”赵爽证法等内容,欢迎下载使用。
这就是本届大会会徽的图案.
这个图案是我国汉代数学家赵爽在证明勾股定理时用到的,被称为“赵爽弦图”.
1955年希腊发行的一枚纪念一位数学家的邮票
这邮票图案中隐藏了什么数学奥妙呢?
相传2500年前,毕达哥拉斯有一次在朋友家里做客时,发现朋友家用砖铺成的地面中反映了直角三角形三边的某种数量关系.
我们也来观察右图中的地面,看看有什么发现?
毕达哥拉斯(公元前572-前492年),古希腊著名的哲学家、数学家、天文学家.
探究1:等腰直角三角形三边关系
两直角边的平方和等于斜边的平方
探究2 任意直角三角形的三边关系
(图中每个小方格的边长是1)
问题5:利用拼图来验证勾股定理:
1、准备四个全等的直角三角形(设直角三角形的两条直角边分别为a,b,斜边c);
2、你能用这四个直角三角形拼成一个正方形吗?拼一拼试试看.
3、你拼的正方形中是否含有以斜边c为边的正方形?
4、你能否就你拼出的图说明a2+b2=c2?
=2ab+b2-2ab+a2
大正方形的面积可以表示为 ;也可以表示为
我国有记载的最早勾股定理的证明,是三国时,我国古代数学家赵爽在他所著的《勾股方圆图注》中,用四个全等的直角三角形拼成一个中空的正方形来证明的.每个直角三角形的面积叫朱实,中间的正方形面积叫黄实,大正方形面积叫弦实,这个图也叫弦图.2002年的国际数学家大会将此图作为大会会徽.
如果直角三角形的两条直角边长分别为a、b,斜边为c,那么
即 直角三角形两条直角边的平方和等于斜边的平方.
表示为:在Rt△ABC中,∠C=90°,
在中国古代,人们把弯曲成直角的手臂的上半部分称为“勾”,下半部分称为“股”.我国古代学者把直角三角形较短的直角边称为“勾”,较长的直角边称为“股”,斜边称为“弦”.
这个定理在中国又称为“商高定理”,商高是公元前十一世纪的中国人.当时中国的朝代是西周,是奴隶社会时期.在中国古代大约是战国时期西汉的数学著作《周髀算经》中记录着商高同周公的一段对话. 商高说:“…故折矩,勾广三,股修四,经隅五.”商高那段话的意思就是说:当直角三角形的两条直角边分别为3(短边)和4(长边)时,径隅(就是弦)则为5.以后人们就简单地把这个事实说成“勾三股四弦五”.由于勾股定理的内容最早见于商高的话中,所以人们就把这个定理叫做“商高定理”.
1.求下列图中字母所表示的正方形的面积。
2.求出下列直角三角形中未知边的长度。
∵ x2+52=132
∴ x2=132-52
1、本节课我们学到了什么?
通过本节课的学习我们不但知道了著名的勾股定理,还知道从特殊到一般的探索方法及借助于图形的面积来探索、验证数学结论的数形结合思想。
2、学了本节课后我们有什么感想?
很多的数学结论存在于平常的生活中,需要我们用数学的眼光去观察、思考、发现,这节课我们还受到了数学文化辉煌历史的教育。
必做题:1. 请你利用今天学习的面积法证明教材习题17.1第13题.
选做题:2. 课下每个同学制作一张勾股定理的数学小报,并自己上网查阅与勾股定理有关的知识,证明方法和应用等,然后小组交流、展示.
相关课件
这是一份人教版八年级下册17.1 勾股定理背景图ppt课件,共17页。
这是一份人教版八年级下册17.1 勾股定理示范课ppt课件,共18页。PPT课件主要包含了勾股定理,勾股数,勾股树,拓展训练等内容,欢迎下载使用。
这是一份人教版八年级下册17.1 勾股定理课文内容课件ppt,共36页。PPT课件主要包含了学习目标,SA+SBSC,探究新知,a2+b2c2,勾股定理的证明,拼过程展示,勾股世界,c2a2+b2,a2c2-b2,b2c2-a2等内容,欢迎下载使用。
