![专题18 洛必达法则(2大题型)-2025年高考数学二轮热点题型归纳与变式演练(新高考通用)(原卷版)第1页](http://img-preview.51jiaoxi.com/3/3/16712250/0-1739576411603/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题18 洛必达法则(2大题型)-2025年高考数学二轮热点题型归纳与变式演练(新高考通用)(原卷版)第2页](http://img-preview.51jiaoxi.com/3/3/16712250/0-1739576411694/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题18 洛必达法则(2大题型)-2025年高考数学二轮热点题型归纳与变式演练(新高考通用)(解析版)第1页](http://img-preview.51jiaoxi.com/3/3/16712250/1-1739576417130/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题18 洛必达法则(2大题型)-2025年高考数学二轮热点题型归纳与变式演练(新高考通用)(解析版)第2页](http://img-preview.51jiaoxi.com/3/3/16712250/1-1739576417176/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题18 洛必达法则(2大题型)-2025年高考数学二轮热点题型归纳与变式演练(新高考通用)(解析版)第3页](http://img-preview.51jiaoxi.com/3/3/16712250/1-1739576417206/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
专题18 洛必达法则(2大题型)-2025年高考数学二轮热点题型归纳与变式演练(新高考通用)
展开
这是一份专题18 洛必达法则(2大题型)-2025年高考数学二轮热点题型归纳与变式演练(新高考通用),文件包含专题18洛必达法则2大题型-2025年高考数学二轮热点题型归纳与变式演练新高考通用原卷版docx、专题18洛必达法则2大题型-2025年高考数学二轮热点题型归纳与变式演练新高考通用解析版docx等2份试卷配套教学资源,其中试卷共20页, 欢迎下载使用。
目录(Ctrl并单击鼠标可跟踪链接)
TOC \ "1-1" \h \u \l "_Tc22589" 题型01 洛必达法则的直接计算 PAGEREF _Tc22589 \h 1
\l "_Tc8253" 题型02 洛必达法则解决最值问题 PAGEREF _Tc8253 \h 3
题型01 洛必达法则的直接计算
【解题规律·提分快招】
【典例训练】
一、单选题
1.(23-24高三下·吉林长春·期中)1696年,洛必达在他的著作《无限小分析》一书中创造了一种算法,用以寻找满足一定条件的两函数之商的极限,法则的大意为:在一定条件下通过对分子、分母分别求导再求极限来确定未定式值的方法.如:,按此法则有( )
A.2B.1C.0D.-2
2.我们把分子、分母同时趋近于0的分式结构称为型,比如:当时,的极限即为型.两个无穷小之比的极限可能存在,也可能不存在,为此,洛必达在1696年提出洛必达法则:在一定条件下通过对分子、分母分别求导再求极限来确定未定式值的方法.如:,则( )
A.0B.C.1D.2
二、填空题
3.年,洛必达在他的著作《无限小分析》一书中创造了一种算法,用以寻找满足一定条件的两函数之商的极限,法则的大意为:在一定条件下通过对分子、分母分别求导再求极限来确定未定式值的方法.如:,按此方法则有 .
题型02 洛必达法则解决最值问题
【典例训练】
一、解答题
1.(2024高三·全国·专题练习)恒成立,求的取值范围
2.(2024高三·全国·专题练习)已知函数.当时,求的取值范围.
3.(2024高三·全国·专题练习)已知函数,如果当,且时,,求的取值范围.
4.(2024·浙江·二模)①在微积分中,求极限有一种重要的数学工具——洛必达法则,法则中有结论:若函数,的导函数分别为,,且,则
.
②设,k是大于1的正整数,若函数满足:对任意,均有成立,且,则称函数为区间上的k阶无穷递降函数.
结合以上两个信息,回答下列问题:
(1)试判断是否为区间上的2阶无穷递降函数;
(2)计算:;
(3)证明:,.
一、单选题
1.(23-24高三下·北京朝阳·期中)两个无穷小之比或两个无穷大之比的极限可能存在,也可能不存在,为此,洛必达在1696年提出洛必达法则,即在一定条件下通过对分子、分母分别求导再求极限来确定未定式值的方法,如,则( )
A.B.C.1D.2
2.(23-24高三下·新疆伊犁·期中)我们把分子、分母同时趋近于0的分式结构称为型,比如:当时,的极限即为型.两个无穷小之比的极限可能存在,也可能不存在,为此,洛必达在1696年提出洛必达法则:在一定条件下通过对分子、分母分别求导再求极限来确定未定式值的方法.如:,则( )
A.B.C.1D.2
二、解答题
3.(2024高三·全国·专题练习)已知函数,当时,,求实数a的取值范围.
4.(2024高三·全国·专题练习),恒成立,求的取值范围
5.(2024高三·全国·专题练习)已知函数,若当时,恒有成立,求实数的取值范围.
6.(2024高三·全国·专题练习)设函数,
(1)若,(为常数),求的解析式;
(2)在(1)条件下,若当时,,求的取值范围.
7.(23-24高三下·山东泰安·期中)①在高等数学中,关于极限的计算,常会用到:i)四则运算法则:如果,,则,,若B≠0,则;ii)洛必达法则:若函数,的导函数分别为f′x,,,,则;
②设,k是大于1的正整数,若函数满足:对,均有成立,则称函数为区间(0,a)上的k阶无穷递降函数.结合以上两个信息,回答下列问题;
(1)计算:①;
②;
(2)试判断是否为区间上的2阶无穷递降函数;并证明:,.
8.(2024·河北邢台·二模)在函数极限的运算过程中,洛必达法则是解决未定式型或型极限的一种重要方法,其含义为:若函数和满足下列条件:
①且(或,);
②在点的附近区域内两者都可导,且;
③(可为实数,也可为),则.
(1)用洛必达法则求;
(2)函数(,),判断并说明的零点个数;
(3)已知,,,求的解析式.
参考公式:,.
一、前言
在高中,涉及到求参数的取值范围时,参数分离后,有时会出现分子与分母之比为两个无穷小之比、两个无穷大之比或两个趋近于零的数之比。这个比值可能是定值也可能是不存在,这时如果我们要计算出他们的比值,就需要运用到洛必达法则。
二、洛必达法则定义
在一定条件下,通过分子分母分别求导,再求极限来确定未定式的值的方法,称为洛必达法则。
三、法则形式
1、法则1(型):若函数和满足下列条件:
(1)设当时, 及;
(2)在点处函数和的图像是连续的,即函数和在点处存在导数;
(3);则:.
2、法则2(型): 若函数和满足下列条件:
(1) 及;
(2)在点处函数和的图像是连续的,即函数和在点处存在导数;
(3),则:.
3、法则3(型):若函数和满足下列条件:
(1) 及;
(2)在点处函数和的图像是连续的,即函数和在点处存在导数;且;
(3),则:=.
【特别提醒】
(1)将上面公式中的换成洛必达法则也成立。
(2)洛必达法则可处理型。
(3)首先要检查是否满足型定式,否则用洛必达法会出错。当不满足三个前提条件时,就不能用洛必达法则
(4)若条件符合,洛必达法则可连续多次使用,直到求出极限为止。
(5)高中阶段,洛必达法则一般是用来确定最值,方便解题。
四、适用类型的转化
(1)型的转化:或;
(2)型的转化:
(3)、型的转化:幂指函数类
相关试卷
这是一份专题08 三角恒等变换(6大题型)-高考数学二轮热点题型归纳与变式演练(新高考通用),文件包含专题08三角恒等变换6大题型-高考数学二轮热点题型归纳与变式演练新高考通用原卷版docx、专题08三角恒等变换6大题型-高考数学二轮热点题型归纳与变式演练新高考通用解析版docx等2份试卷配套教学资源,其中试卷共43页, 欢迎下载使用。
这是一份专题06 导数中的极值点偏移问题(4大题型)-高考数学二轮热点题型归纳与变式演练(新高考通用),文件包含专题06导数中的极值点偏移问题4大题型-高考数学二轮热点题型归纳与变式演练新高考通用原卷版docx、专题06导数中的极值点偏移问题4大题型-高考数学二轮热点题型归纳与变式演练新高考通用解析版docx等2份试卷配套教学资源,其中试卷共70页, 欢迎下载使用。
这是一份专题06 导数与函数的极值、最值(6大题型)-高考数学二轮热点题型归纳与变式演练(新高考通用),文件包含专题06导数与函数的极值最值6大题型-高考数学二轮热点题型归纳与变式演练新高考通用原卷版docx、专题06导数与函数的极值最值6大题型-高考数学二轮热点题型归纳与变式演练新高考通用解析版docx等2份试卷配套教学资源,其中试卷共89页, 欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/27f0ad84943772f8cdf3a353ba2877c5.jpg)