开学活动
搜索
    上传资料 赚现金

    2025年中考数学几何专项复习专题13几何变换之翻折(轴对称)巩固练习(提优)(原卷版+解析)

    2025年中考数学几何专项复习专题13几何变换之翻折(轴对称)巩固练习(提优)(原卷版+解析)第1页
    2025年中考数学几何专项复习专题13几何变换之翻折(轴对称)巩固练习(提优)(原卷版+解析)第2页
    2025年中考数学几何专项复习专题13几何变换之翻折(轴对称)巩固练习(提优)(原卷版+解析)第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025年中考数学几何专项复习专题13几何变换之翻折(轴对称)巩固练习(提优)(原卷版+解析)

    展开

    这是一份2025年中考数学几何专项复习专题13几何变换之翻折(轴对称)巩固练习(提优)(原卷版+解析),共24页。试卷主要包含了如图,在△ABC中等内容,欢迎下载使用。
    (1)面出△ABC关于y轴对称的△A1B1C1;
    (2)画出△A1B1C1向下平移5个单位长度得到的△A2B2C2;若点B的坐标为(4,2),请直接写出B2的坐标.
    2.如图,直线m是△ABC中BC边的垂直平分线,点P是直线m上的一动点,若AB=6,AC=4,BC=7,
    (1)求PA+PB的最小值,并说明理由;
    (2)求△APC周长的最小值.
    3.如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.
    (1)若∠ABC=70°,则∠MNA的度数是 .
    (2)若AB=8cm,△MBC的周长是14cm.
    ①求BC的长度;
    ②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.
    4.如图,△ABC是等边三角形,点C关于AB的对称的点为E,点P是直线EB上的一个动点,连接AP,作∠APQ=60°,交射线BC于点Q.
    (1)如图1,连接AQ,求证:△APQ为等边三角形;
    (2)如图2,当点P在线段EB延长线上时,请你补全图形,并写出线段BQ、AB、BP之间的数量关系(无需证明).
    5.国庆期间,广场上对一片花圃做了美化造型(如图所示),整个造型构成花的形状.造型平面呈轴对称,其正中间“花蕊”部分(区域①)摆放红花,两边“花瓣”部分(区域②)摆放黄花.
    (1)两边“花瓣”部分(区域②)的面积是 .(用含a的代数式表示)
    (2)已知a=2米,红花价格为220元/平方米,黄花价格为180元/平方米,求整个造型的造价(π取3).
    6.如图,在▱ABCD中,AD的垂直平分线经过点B,与CD的延长线交于点E,AD与BE相交于点O,连接AE,BD.
    (1)求证:四边形ABDE为菱形;
    (2)若AD=8,问在BC上是否存在点P,使得PE+PD最小?若存在,求线段BP的长;若不存在,请说明理由.
    7.如图,在长方形ABCD中,AB=8,AD=10,点E为BC上一点,将△ABE沿AE折叠,使点B落在长方形内点F处,连接DF,且DF=6.
    (1)求证:AF⊥DF.
    (2)求BE的长.
    8.如图,△ABC中,∠ACB=90°.D是边AB上一点,点D关于直线AC的对称点为E,连接EC并延长EC至点F,且CF=EC.连接AE,BF.
    (1)依题意补全图形;
    (2)猜想线段AB,AE,BF的数量关系并证明.
    9.如图,在△ABC中.AB=AC,点E在线段BC上,连接AE并延长到G,使得EG=AE,过点G作GD∥BA分别交BC,AC于点F,D.
    (1)求证:△ABE≌△GFE;
    (2)若GD=3,CD=1,求AB的长度;
    (3)过点D作DH⊥BC于H,P是直线DH上的一个动点,连接AF,AP,FP,若∠C=45°,在(2)的条件下,求△AFP周长的最小值.
    10.如图,在直角坐标系中,A(5,0),B(3,4),C(0,4),点D在OA上,∠ABD=∠1,BH⊥OA于H.
    (1)判断△OAB的形状,并说明理由.
    (2)求点D的坐标.
    (3)若P是BH上的动点,当△PCD的周长最小时,求△PCD的面积.
    11.如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD沿CF折叠,使点D落在AC上的点N处.
    (1)求证:四边形AECF是平行四边形;
    (2)若AB=6,AC=10,求四边形AECF的面积及AE与CF之间的距离.
    12.问题提出:
    (1)如图①,在△ABC中,AD是ABC边BC的高,点E是BC上任意点,若AD=3,则AE的最小值为 ;
    (2)如图②,在等腰△ABC中,AB=AC,∠BAC=120°,DE是AC的垂直平分线,分别交BC、AC于点D、E,DE=1cm,求△ABD的周长;
    问题解决:
    (3)如图③,某公园管理员拟在园内规划一个△ABC区域种植花卉,且为方便游客游览,欲在各顶点之间规划道路AB、BC和AC,满足∠BAC=90°,点A到BC的距离为2km.为了节约成本,要使得AB、BC、AC之和最短,试求AB+BC+AC的最小值(路宽忽略不计).
    几何变换之翻折(轴对称)巩固练习
    1.已知,在10×10网格中建立如图所示的平面直角坐标系,△ABC是格点三角形(三角形的顶点是网格线的交点).
    (1)面出△ABC关于y轴对称的△A1B1C1;
    (2)画出△A1B1C1向下平移5个单位长度得到的△A2B2C2;若点B的坐标为(4,2),请直接写出B2的坐标.
    【分析】(1)分别作出A,B,C 的对应点A1,B1,C1即可.
    (2)分别作出点A1,B1,C1的对应点A2,B2,C2即可.
    【解答】解:(1)如图,△A1B1C1即为所求.
    (2)如图,△A2B2C2即为所求.B2(﹣4,﹣3).
    【点评】本题考查作图﹣轴对称变换,平移变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
    2.如图,直线m是△ABC中BC边的垂直平分线,点P是直线m上的一动点,若AB=6,AC=4,BC=7,
    (1)求PA+PB的最小值,并说明理由;
    (2)求△APC周长的最小值.
    【分析】(1)根据线段的性质即可得到结论;
    (2)根据题意知点C关于直线m的对称点为点B,故当点P与点D重合时,AP+CP值的最小,求出AB长度即可得到结论.
    【解答】解:(1)PA+PB=AB=6;
    原因:两点之间,线段最短;
    (2)∵m是BC的垂直平分线,点P在m上,
    ∴点C关于直线m的对称点是点B且PB=PC,
    ∵C△ABC=AP+PC+AC,
    ∵AC=4,
    要使△APC周长最小,
    即AP+PC最小,
    当点P是m与AB的交点时,PA+PB最小,
    即PA+PB=AB,此时C△ABC=AB+AC=6+4=10.
    【点评】本题考查了轴对称﹣最短路线问题的应用,解此题的关键是找出P的位置.
    3.如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.
    (1)若∠ABC=70°,则∠MNA的度数是 50° .
    (2)若AB=8cm,△MBC的周长是14cm.
    ①求BC的长度;
    ②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.
    【分析】(1)依据△ABC是等腰三角形,即可得到∠ACB的度数以及∠A的度数,再根据MN是垂直平分线,即可得到∠ANM的度数,进而得出∠AMN的度数;
    (2)①依据垂直平分线的性质,即可得到AM=BM,进而得出△BCM的周长=AC+BC,再根据AB=AC=8cm,△MBC的周长是14cm,即可得到BC的长;
    ②依据PB+PC=PA+PC,PA+PC≥AC,即可得到当P与M重合时,PA+PC=AC,此时PB+PC最小,进而得出△PBC的周长最小值.
    【解答】解:(1)∵AB=AC,
    ∴∠C=∠ABC=70°,
    ∴∠A=40°,
    ∵AB的垂直平分线交AB于点N,
    ∴∠ANM=90°,
    ∴∠NMA=50°,
    故答案为:50°;
    (2)①∵MN是AB的垂直平分线,
    ∴AM=BM,
    ∴△BCM的周长=BM+CM+BC=AM+MC+BC=AC+BC,
    ∵AB=AC=8cm,△MBC的周长是14cm,
    ∴BC=14﹣8=6(cm);
    ②当P与M重合时,△PBC的周长最小.
    理由:∵PB+PC=PA+PC,PA+PC≥AC,
    ∴当P与M重合时,PA+PC=AC,此时PB+PC最小值等于AC的长,
    ∴△PBC的周长最小值=AC+BC=8+6=14(cm).
    【点评】本题主要考查了最短路线问题以及等腰三角形的性质,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.
    4.如图,△ABC是等边三角形,点C关于AB的对称的点为E,点P是直线EB上的一个动点,连接AP,作∠APQ=60°,交射线BC于点Q.
    (1)如图1,连接AQ,求证:△APQ为等边三角形;
    (2)如图2,当点P在线段EB延长线上时,请你补全图形,并写出线段BQ、AB、BP之间的数量关系(无需证明).
    【分析】(1)如图1中,作∠BPF=60°交AB于点F,连接AQ.证明△PBQ≌△PFA(ASA),可得结论.
    (2)结论:BQ=BP+AB.如图2中,在BD上取一点F,使得BF=PB,连接AQ.证明△BPA≌△FPQ(SAS),推出AB=QF,可得结论.
    【解答】(1)证明:如图1中,作∠BPF=60°交AB于点F,连接AQ.
    ∵△ABC是等边三角形,
    ∴∠ABC=60°,
    ∵点E与点C关于AB对称,
    ∴∠EBA=∠CBA=60°=∠BPF,
    ∴∠PFB=60°.
    ∴△PBF是等边三角形,
    ∴PB=PF,AFP=120°=∠PBQ.
    ∵∠BPQ+∠QPF=60°,∠APF+∠QPF=60°,
    ∴∠BPQ=∠APF,
    在△PBQ和△PFA中,
    ∠BPQ=∠APFPB=PF∠PBQ=∠PFA,
    ∴△PBQ≌△PFA(ASA),
    ∴PQ=PA,
    ∵∠APQ=60°,
    ∴△APQ是等边三角形.
    (2)解:补全图形,如图2所示:
    ②解:结论:BQ=BP+AB.
    理由:如图3中,在BD上取一点F,使得BF=PB,连接AQ.
    ∵∠FBP=60°,BF=BP,
    ∴△FBP是等边三角形,
    ∴∠BPF=∠APQ=60°,
    ∴∠APB=∠FPQ,
    ∵PB=PF,PA=PQ,
    ∴△BPA≌△FPQ(SAS),
    ∴AB=QF,
    ∴BQ=BF+FQ=BP+AB.
    【点评】考查等边三角形的性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.
    5.国庆期间,广场上对一片花圃做了美化造型(如图所示),整个造型构成花的形状.造型平面呈轴对称,其正中间“花蕊”部分(区域①)摆放红花,两边“花瓣”部分(区域②)摆放黄花.
    (1)两边“花瓣”部分(区域②)的面积是 2a2+π2•a2 .(用含a的代数式表示)
    (2)已知a=2米,红花价格为220元/平方米,黄花价格为180元/平方米,求整个造型的造价(π取3).
    【分析】(1)区域②的面积=三个正方形的面积+应该半圆的面积.
    (2)分别求出区域①,②的面积,再乘以单价即可.
    【解答】解:(1)区域②的面积=2a2+12•π•a2=2a2+π2•a2.
    故答案为:2a2+π2•a2.
    (2)整个造型的造价:220(2×22−π2×22)+180(2×22+12•π•22)=2960(元).
    【点评】本题考查轴对称,正方形的性质,代数式等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
    6.如图,在▱ABCD中,AD的垂直平分线经过点B,与CD的延长线交于点E,AD与BE相交于点O,连接AE,BD.
    (1)求证:四边形ABDE为菱形;
    (2)若AD=8,问在BC上是否存在点P,使得PE+PD最小?若存在,求线段BP的长;若不存在,请说明理由.
    【分析】(1)根据题意得出AO=DO,AD⊥BE.根据平行四边形的性质得出AB∥CD.即可得出∠ABE=∠BED.从而证得△AOB≌△DOE(AAS),得到BO=EO.即可证得四边形ABDE是平行四边形.由AD⊥BE,证得四边形ABDE是菱形;
    (2)作点D关于BC的对称点D',DD′交BC于点G,延长EB,过D'作DM⊥BE于点M,连接ED'交BC于点P,此时PD+PE最小;根据题意得到BO=DG.BM=GD.即可得到MD'=DO=12AD=4.进一步得到BO=EO=BM.通过证得△BEP∽△MED′,得到BPMD'=BEEM=23,进而证得BP=83.
    【解答】(1)证明:∵BE垂直平分AD,
    .∴AO=DO,AD⊥BE.
    ∵四边形ABCD是平行四边形,
    ∴AB∥CD.
    ∴∠ABE=∠BED.
    ∵∠AOB=∠DOE,
    又AO=DO,
    ∴△AOB≌△DOE(AAS),
    ∴BO=EO.
    又AO=DO,
    ∴四边形ABDE是平行四边形.
    ∵AD⊥BE,
    ∴四边形ABDE是菱形;
    (2)解:如图所示:作点D关于BC的对称点D',DD′交BC于点G,延长EB,过D'作DM⊥BE于点M,连接ED'交BC于点P,此时PD+PE最小;
    ∵∠B0D=∠OBC=∠BGD=90°,
    ∴四边形ODGB是矩形.
    ∴BO=DG.
    同理BM=GD.
    ∴MD'=DO=12AD=4.
    又BO=EO,
    ∴BO=EO=BM.
    ∵∠EBP=∠M=90°,∠BEP=∠MED',
    ∴△BEP∽△MED′,
    ∴BPMD'=BEEM=23,
    ∴BP4=23,即BP=83.
    【点评】本题考查了线段垂直平分线的性质,平行四边形的性质,三角形求得的判定和性质,菱形的判定和性质,轴对称﹣最短路线问题,熟练掌握性质定理是解题的关键.
    7.如图,在长方形ABCD中,AB=8,AD=10,点E为BC上一点,将△ABE沿AE折叠,使点B落在长方形内点F处,连接DF,且DF=6.
    (1)求证:AF⊥DF.
    (2)求BE的长.
    【分析】(1)由折叠的性质和勾股定理的逆定理证出△ADF是直角三角形即可;
    (2)设BE=x,则EF=x,DE=6+x,EC=10﹣x,在Rt△DCE中,由勾股定理得出方程,解方程即可.
    【解答】(1)证明:∵将△ABE沿AE折叠,使点B落在长方形内点F处,
    ∴AF=AB=8,
    ∵AF2+DF2=62+82=100=102=AD2,
    ∴△ADF是直角三角形,∠AFD=90°
    ∴AF⊥DF;
    (2)解:由折叠的性质得:BE=FE,∠B=∠AFE=90°,
    又∵∠AFD=90°,
    ∴∠AFE+∠AFD=180°,
    ∴点D,F,E在一条直线上,
    ∵四边形ABCD是矩形,
    ∴BC=AD=10,CD=AB=8,∠C=90°,
    设BE=x,则EF=x,DE=6+x,EC=10﹣x,
    在Rt△DCE中,由勾股定理得:CE2+CD2=DE2,
    即(10﹣x)2+82=(6+x)2.
    解得:x=4.
    ∴BE=4.
    【点评】本题考查了翻折变换的性质、矩形的性质、勾股定理的逆定理、勾股定理等知识;熟练掌握翻折变换的性质和勾股定理以及逆定理是解题的关键.
    8.如图,△ABC中,∠ACB=90°.D是边AB上一点,点D关于直线AC的对称点为E,连接EC并延长EC至点F,且CF=EC.连接AE,BF.
    (1)依题意补全图形;
    (2)猜想线段AB,AE,BF的数量关系并证明.
    【分析】(1)根据要求画出图形即可.
    (2)结论:AB=AE+BF.想办法证明AD=AE,BD=BF即可.
    【解答】解:(1)图形如图所示:
    (2)结论:AB=AE+BF.
    理由:∵D,E关于AC对称,
    ∴DE⊥AC,CE=CD,AE=AD,
    ∵EC=CF,
    ∴CD=CE=CF,
    ∴∠EDF=90°,
    ∴ED⊥FD,
    ∴AC∥DF,
    ∵∠ACB=90°,
    ∴AC⊥BC,
    ∴DF⊥BC,
    ∵CD=CF,
    ∴CB垂直平分线段DF,
    ∴BD=BF,
    ∵AB=AD+BD,AD=AE,BD=BF,
    ∴AB=AE+BF.
    【点评】本题考查作图﹣轴对称变换,线段的垂直平分线的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
    9.如图,在△ABC中.AB=AC,点E在线段BC上,连接AE并延长到G,使得EG=AE,过点G作GD∥BA分别交BC,AC于点F,D.
    (1)求证:△ABE≌△GFE;
    (2)若GD=3,CD=1,求AB的长度;
    (3)过点D作DH⊥BC于H,P是直线DH上的一个动点,连接AF,AP,FP,若∠C=45°,在(2)的条件下,求△AFP周长的最小值.
    【分析】(1)根据AAS证明三角形全等即可.
    (2)求出FG的长,利用全等三角形的性质解决问题即可.
    (3)证明点F与点C关于直线PD对称,推出当点P与D重合时,△PAF的周长最小,最小值=△ADF的周长.
    【解答】(1)证明:如图1中,∵GD∥AB,
    ∴∠B=∠EFG,
    在△ABE和△GFE中,
    ∠B=∠EFG∠AEB=∠GEFAE=EG,
    ∴△ABE≌△GFE(AAS).
    (2)解:如图1中,
    ∵AB=AC,
    ∴∠B=∠ACB,
    ∵DF∥AB,
    ∴∠DFC=∠B,
    ∴∠DFC=∠DCF,
    ∴DC=DF=1,
    ∵DG=3,
    ∴FG=DG﹣DF=2,
    ∵△ABE≌△GFE,
    ∴AB=GF=2.
    (3)解:如图2中,∵AB=AC=2,
    ∴∠B=∠C=45°,
    ∴∠BAC=90°,
    ∵AB∥FD,
    ∴∠FDC=∠BAC=90°,即FD⊥AC
    ∵AC=AB=2,CD=1,
    ∴DA=DC,
    ∴FA=FC,
    ∴∠C=∠FAC=45°,
    ∴∠AFC=90°,
    ∴DF=DA=DC=1,
    ∴AF=2,
    ∵DH⊥CF,
    ∴FH=CH,
    ∴点F与点C关于直线PD对称,
    ∴当点P与D重合时,△PAF的周长最小,最小值=△ADF的周长=2+2.
    【点评】本题考查等腰三角形的性质,平行线的性质,全等三角形的判定和性质,轴对称最短问题等知识,解题的关键是正确寻找全等三角形解决问题,学会利用轴对称解决最短问题,属于中考常考题型.
    10.如图,在直角坐标系中,A(5,0),B(3,4),C(0,4),点D在OA上,∠ABD=∠1,BH⊥OA于H.
    (1)判断△OAB的形状,并说明理由.
    (2)求点D的坐标.
    (3)若P是BH上的动点,当△PCD的周长最小时,求△PCD的面积.
    【分析】(1)依据勾股定理即可得到OB的长,依据点A的坐标即可得到OA的长,进而得出△AOB是等腰三角形;
    (2)依据四边形BCOH是矩形,即可得到OH=BC=3,进而得出AH=AO﹣HO=2,再根据△ABD是等腰三角形,即可得到DH的长,进而得到点D的坐标;
    (3)连接AC,交BH于P,连接PD,依据PD=PA,可得PC+PD+CD=PC+PA+CD=AC+CD,此时,△PCD的周长最小,求得PH=85,再根据S△PCD=S梯形PHOC﹣S△COD﹣S△PHD进行计算即可.
    【解答】解:(1)△AOB是等腰三角形,理由如下:
    ∵B(3,4),C(0,4),
    ∴BC∥OA,OC=4,
    ∴Rt△BOC中,OB=32+42=5,
    ∵A(5,0),
    ∴OA=5,
    ∴OA=OB,即△AOB的等腰三角形;
    (2)如图1,∵BH⊥AO,BC∥OA,
    ∴∠BHO=90°=∠COH=∠BCO,
    ∴四边形BCOH是矩形,
    ∴OH=BC=3,
    ∴AH=AO﹣HO=2,
    ∵∠ABD=∠1,
    ∴∠ABO=∠CBD,
    由BC∥AO可得∠3=∠CBD,
    由(1)可得∠2=∠ABO,
    ∴∠3=∠2,
    ∴AB=DB,
    ∴AH=DH=2,
    ∴OD=OH﹣DH=3﹣2=1,
    ∴D(1,0);
    (3)如图2,连接AC,交BH于P,连接PD,
    由(2)可得,PD=PA,
    ∴PC+PD+CD=PC+PA+CD=AC+CD,
    此时,△PCD的周长最小,
    设AC的解析式为y=kx+b(k≠0),
    把A(5,0),C(0,4)代入可得,
    0=5k+b4=b,
    解得k=−45b=4,
    ∴直线AC的解析式为y=−45x+4,
    当x=3时,y=85,
    ∴P(3,85),即PH=85,
    ∴S△PCD=S梯形PHOC﹣S△COD﹣S△PHD
    =(85+4)×32−12×4×1−12×85×2
    =425−2−85
    =245.
    【点评】本题主要考查了勾股定理、三角形的面积以及最短路线问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.
    11.如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD沿CF折叠,使点D落在AC上的点N处.
    (1)求证:四边形AECF是平行四边形;
    (2)若AB=6,AC=10,求四边形AECF的面积及AE与CF之间的距离.
    【分析】(1)首先由矩形的性质和折叠的性质证得AB=CD,AD∥BC,∠ANF=90°,∠CME=90°,易得AN=CM,由平行四边形的判定定理可得结论;
    (2)由AB=6,AC=10,可得BC=8,设CE=x,则EM=8﹣x,CM=10﹣6=4,在Rt△CEM中,利用勾股定理可解得x,由平行四边形的面积公式可得结果.
    【解答】(1)证明:∵四边形ABCD是矩形,
    ∴AD∥BC,AB∥CD,
    ∴∠CAB=∠ACD.
    由折叠的性质可得∠EAB=∠EAC,∠ACF=∠FCD,
    又∵∠CAB=∠ACD,
    ∴∠EAC=∠ACF,
    ∴AE∥CF,
    ∴四边形AECF是平行四边形;
    (2)解:在Rt△ABC中,AB=6,AC=10,
    则根据勾股定理得,BC=8.
    ∵AM=AB﹣6,
    ∴CM=AC﹣AM=AC﹣AB=4.
    设CE=x,则BE=EM=8﹣x,
    在Rt△EMC中,利用勾股定理可得EM2+CM2=CE2,
    即(8﹣x)2+42=x2,解得x=5,
    故四边形AECF的面积=AB•CE=6×5=30.
    在Rt△ABE中,由勾股定理得AE=35,
    设AE与CF之间的距离为h,
    则AE•h=30,
    即35ℎ=30,
    ∴ℎ=25.
    【点评】本题主要考查了折叠的性质、矩形的性质、平行四边形的判定定理和勾股定理等,综合运用各定理是解答此题的关键.
    12.问题提出:
    (1)如图①,在△ABC中,AD是ABC边BC的高,点E是BC上任意点,若AD=3,则AE的最小值为 3 ;
    (2)如图②,在等腰△ABC中,AB=AC,∠BAC=120°,DE是AC的垂直平分线,分别交BC、AC于点D、E,DE=1cm,求△ABD的周长;
    问题解决:
    (3)如图③,某公园管理员拟在园内规划一个△ABC区域种植花卉,且为方便游客游览,欲在各顶点之间规划道路AB、BC和AC,满足∠BAC=90°,点A到BC的距离为2km.为了节约成本,要使得AB、BC、AC之和最短,试求AB+BC+AC的最小值(路宽忽略不计).
    【分析】(1)根据AD是ABC边BC的高,点E是BC上任意点,AD=3,即可求AE的最小值;
    (2)根据AB=AC,∠BAC=120°,可得∠B=∠C=30°,根据DE是AC的垂直平分线,可得AD=CD,∠DAC=∠C=30°,∠BAD=90°,根据勾股定理即可求出△ABD的周长;
    (3)延长CB到点D,使得AB=DB,延长BC到点E,使得CE=AC,连接AD、AE,DE的最小值即为AB+BC+AC的最小值,以DE为斜边向下作等腰直角三角形ODE,以点O为圆心,OD为半径作圆O,180°−12∠DOE=135°,可得点A在弦DE所对的劣弧,过点A作AP⊥DE于P,过点O作OH⊥DE于H,连接OA,则AP=2,则AP+OH≤AO,可得2+x≤2x,所以DE的最小值为2x.
    【解答】解:(1)∵AD是ABC边BC的高,点E是BC上任意点,
    AD=3,则AE的最小值为3,
    故答案为:3;
    (2)∵AB=AC,∠BAC=120°,
    ∴∠B=∠C=12(180°﹣120°)=30°,
    ∵DE是AC的垂直平分线,
    ∴AD=CD,∠DAC=∠C=30°,
    ∴∠BAD=∠BAC﹣∠DAC=120°﹣30°=90°,
    在Rt△CDE中,DE=1cm,
    ∴AD=CD=2DE=2cm,
    在RtABD中,BD=2AD=2CD=4(cm),AB=ADtan60°=23(cm),
    ∴△ABD的周长为:AD+BD+AB=2+4+23=6+23(cm).
    (3)延长CB到点D,使得AB=DB,延长BC到点E,使得CE=AC,连接AD、AE,
    ∴∠ADB=∠DAB=12∠ABC,∠AEC=∠CAE=12∠ACB,AB+BC+AC=DB+BC+CE=DE,
    ∴DE的最小值即为AB+BC+AC的最小值.
    ∵∠DAB+∠CAE=12(∠ABC+∠ACB)=12(180°﹣∠BAC)=45°,
    ∴∠DAE=∠DAB+∠CAE+∠BAC=135°,
    以DE为斜边向下作等腰直角三角形ODE,以点O为圆心,OD为半径作圆O,∠EAD=180°−12∠DOE=135°,
    ∴点A在弦DE所对的劣弧,
    过点A作AP⊥DE于P,过点O作OH⊥DE于H,连接OA,则AP=2,
    设DH=x,则DE=2x,OH=x,OA=OD=2x,
    则AP+OH≤AO,可得2+x≤2x,
    ∴x≥22−1.
    ∴DE的最小值为2x=42−1=42+4.
    ∴AB+BC+AC的最小值为(42+4)km.
    【点评】本题是轴对称综合题,解决本题的关键是综合掌握线段垂直平分线的性质、等腰直角三角形的性质、含30度角的直角三角形、勾股定理等知识.

    相关试卷

    2025年中考数学几何专项复习专题12几何变换之平移巩固练习(提优)(原卷版+解析):

    这是一份2025年中考数学几何专项复习专题12几何变换之平移巩固练习(提优)(原卷版+解析),共26页。

    中考数学二轮复习几何专项知识精讲+基础提优训练专题13 几何变换之翻折(轴对称)巩固练习(提优)(2份,原卷版+解析版):

    这是一份中考数学二轮复习几何专项知识精讲+基础提优训练专题13 几何变换之翻折(轴对称)巩固练习(提优)(2份,原卷版+解析版),文件包含中考数学二轮复习几何专项知识精讲+基础提优训练专题13几何变换之翻折轴对称巩固练习提优-原卷版doc、中考数学二轮复习几何专项知识精讲+基础提优训练专题13几何变换之翻折轴对称巩固练习提优-解析版doc等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。

    最新中考几何专项复习专题13 几何变换之翻折(轴对称)知识精讲:

    这是一份最新中考几何专项复习专题13 几何变换之翻折(轴对称)知识精讲,共5页。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map