

2024-2025学年北京市石景山区高三上册10月月考数学检测试题
展开
这是一份2024-2025学年北京市石景山区高三上册10月月考数学检测试题,共5页。
第一部分 选择题(共40分)
一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.
1. 已知集合,集合,那么等于( )
A. B.
C. D.
2. 设复数z满足,则z在复平面内所对应的点位于( )
A. 第一象限B. 第二象限C. 第三象限D. 第四象限
3. 下列函数中,在区间上单调递增的是( )
A. B.
C. D.
4. 在的展开式中,的系数为( )
A. B. 4C. D. 6
5 设,且,则( )
A. B.
C. D.
6. 已知分别为三个内角的对边,若,,则等于( )
A. B. C. D.
7. 函数,,的零点分别为,,,则,,,的大小顺序为( )
A. B. C. D.
8. 在中,角A,B,C所对的过分别为a,b,c,则“”是“”的( )
A. 充分不必要条件B. 必要不充分条件
C. 充要条件D. 既不充分也不必要条件
9. 恩格斯曾经把对数的发明、解析几何的创始和微积分的建立称为十七世纪数学的三大成就.其中对数的发明曾被十八世纪法国数学家拉普拉斯评价为“用缩短计算时间延长了天文学家的寿命”.已知正整数N的70次方是一个83位数,则由下面表格中部分对数的近似值(精确到0.001),可得N的值为( )
A. 13B. 14C. 15D. 16
10. 已知函数,有最大值,并将其记为,则说法正确的是( )
A. 的最小值为−2,的最大值为2B. 的最大值为2,的最小值为2
C. 的最大值为2,的最大值为2D. 的最小值为−2,的最小值为2
第二部分 非选择题(共110分)
二、填空题共5小题,每小题5分,共25分.
11. 函数的定义域是____________.
12. 点与,关于轴对称,写出一个符合题意的值______.
13. 已知等差数列an的前n项和为,则的最大值为______.
14. 已知函数(,,是常数,,).若在区间上具有单调性,且,则的值为_________.
15. 已知函数,给出下列四个结论:
①函数是奇函数;
②,且,关于x的方程恰有两个不相等的实数根;
③已知是曲线上任意一点,,则;
④设Mx1,y1为曲线上一点,Nx2,y2为曲线上一点.若,则.
其中所有正确结论的序号是_________.
三、解答题共6小题,共85分.解答应与出文字说明,演算步骤或证明过程.
16. 已知函数,且.
(1)求的值和的最小正周期;
(2)求在上最大值和最小值.
17. 在中,角,,的对边分别为,,,.
(1)求的值;
(2)若,从下列三个条件中选出一个条件作为已知,使得存在唯一确定,求的面积.条件①:;条件②:;条件③:的周长为9.
注:如果选择多个条件分别解答,按第一个解答计分.
18. 某学校为提升学生科学素养,所有学生在学年中完成规定的科普学习任务,并通过科普测试获得相应科普过程性积分.现从该校随机抽取60名学生,获得其科普测试成绩(百分制,且均为整数)及相应过程性积分数据,整理如下表:
用频率估计概率.
(1)从该校全体学生中随机抽取一名学生,估计这名学生科普过程性积分不低于2分概率;
(2)从该校全体学生中随机抽取三名学生,估计这三名学生的科普过程性积分之和恰好为6分的概率;
(3)从该校科普过程性积分不低于1分的学生中随机抽取两名学生,记这两名学生科普过程性积分之差的绝对值不超过1的概率估计值记为,这两名学生科普过程性积分之差的绝对值不低于1的概率估计值记为,试判断和的大小(结论不要求证明).
19. 已知函数.
(1)求函数的极值;
(2)求证:当时,;
(3)过原点是否存在曲线的切线,若存在,求出切线方程;若不存在,说明理由.
20. 已知函数,其中.
(1)当时,求曲线在点处的切线方程;
(2)若在上存在极值,求实数取值范围;
(3)求的零点个数.
21. 对于数列,定义设的前n项和为.
(1)设,写出,,,;
(2)证明:“对任意,有”的充要条件是“对任意,有”;
(3)已知首项为0,项数为的数列满足:
①对任意且,有;
②.
求所有满足条件的数列的个数.
M
2
3
7
11
13
0.301
0.477
0.845
1.041
1.114
科普测试成绩x
科普过程性积分
人数
3
20
2
10
1
15
0
15
相关试卷
这是一份2024-2025学年北京市顺义区高三上册10月月考数学检测试题,共5页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年北京市丰台区高三上册10月月考数学检测试题,共5页。试卷主要包含了 已知复数,则, 展开式中的系数为, 数列的前项和为,且,,则等于, 圆C等内容,欢迎下载使用。
这是一份2024-2025学年北京市顺义区高三上册10月月考数学检测试题,共5页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
