










初中数学1.2.3绝对值课文内容ppt课件
展开
这是一份初中数学1.2.3绝对值课文内容ppt课件,文件包含新湘教版初中数学七年级上册123《绝对值》课件pptx、新湘教版初中数学七年上册123《绝对值》教案docx等2份课件配套教学资源,其中PPT共22页, 欢迎下载使用。
1、了解绝对值的表示法,会计算有理数的绝对值,能利用数形结合思想来理解绝对值的几何定义,理解绝对值非负的意义。2、了通过教学培养分析问题,解决实际问题,读图分析、收集处理信息、团结协作、语言表达的能力。3.通过对绝对值的教学,认识数学知识来源于实践,从现实生活的经历与体验出发,激发对数学问题的兴趣。
正确理解绝对值的概念,能求一个数的绝对值。
正确理解绝对值的几何意义和代数意义。
想一想:什么是相反数?
如果两个数只有符号不同,那么其中一个数叫作另一个数的相反数,也称这两个数互为相反数 。
正数的相反数是_______; 0的相反数是_______;负数的相反数是_______;
2.如图,数轴上A,B两点表示的数互为相反数,且点A与点B之间的距离为4个单位长度,则点A表示的数是 。
小明家、学校、小李家在数轴上的位置分别如图中点A, O,B所示.
若数轴的单位长度表示1km,则A,B两点表示的有理数分别是多少?
小明、小李各自从家到学校要走多远?
在实际生活中,有时无需关注一个数是正数还是负数 .如一个人在东西向的人行道上来回散步时,他只关注走的路程,而不关注方向 . 于是,我们需要学习一个新的概念——绝对值.
数轴上点A到原点O的距离是4,我们说-4的绝对值是4.
数轴上点B到原点O的距离是4,我们说2的绝对值是2.
请说出下面数轴上标出的点,到原点的距离分别为多少?
-4到原点O的距离是4,
-1.5到原点O的距离是1.5,
0到原点O的距离是0,
3到原点O的距离是3,
5到原点O的距离是5,
-1.5的绝对值是1.5。
一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作│a│,读作“a的绝对值”.
例如:-4的绝对值记作:|-4|;
0的绝对值记作:|0|;
3的绝对值记作:|3|。
-1.5的绝对值是1.5
记作: |-4| = 4
记作: |-1.5|= 1.5
记作: | 0 |= 0
记作: | 3 |= 3
记作: | 5 |= 5
负数的绝对值等于它的相反数
正数的绝对值等于它的本身
正数的绝对值是它本身.
负数的绝对值是它的相反数.
非负数的绝对值等于它本身
非正数的绝对值等于它的相反数
解:|0.36|=0.36;
|-7.5|=7.5;
如果a表示一个数,则│a│等于多少?
(1) 当a是正数时, │a│= a;(2) 当a = 0时,│a│= 0;(3) 当a是负数时,│a│=-a.
画一条数轴,用数轴上的点表示 4,-4,2,-2,并求这些点与原点的距离.
解:-4到原点的距离是4;
-2到原点的距离是2;
4到原点的距离是4;
2到原点的距离是2;
例6 若 │a│= 8.7,求a.
解:因为绝对值等于8.7的有理数有8.7和-8.7两个,
所以a = 8.7或a =-8.7。
解:|3|=3; |3.14|=3.14
3.画一条数轴,并分别标出表示绝对值等于2,3.5的数的点.
解:绝对值等于2的数是-2和2;绝对值等于3.5的数是-3.5和3.5。
∴绝对值等于2,3.5的数的点在数轴上表示如下:
1.如图,数轴上有A,B,C,D 四个点,其中绝对值小于2的数对应的点是( )A. 点A; B. 点B; C. 点C; D. 点D。
2.若│a│=│b│,则a和b的关系为( )A. a和b相等; B. a和b互为相反数;C. a和b相等或互为相反数; D. 以上答案都不对
3.某交警每天都骑摩托车沿南北街来回巡逻. 假定向北为正方向,当天巡逻记录如下(单位:千米):15,-9,18,-7,13,-6,10,-6. 则这位交警这一天骑摩托车行了多远?
解:由题意得: │15│+│-9│+│18│+│-7│+│13│ +│-6│ +│10│ +│-6│ =15+9+18+7+13+6+10+6=84(千米), 答:这位交警这一天骑摩托车行了84千米。
一个数的绝对值就是表示这个数的点到原点的距离
互为相反数的绝对值的特点
互为相反数的绝对值相等
课堂作业:P12习题1.2第6、7、8题;
课后作业:P12习题1.2第10、12、13题,预习P14~16《有理数大 小的比较》
相关课件
这是一份初中数学湘教版(2024)七年级上册(2024)1.2 数轴、相反数与绝对值教学ppt课件,文件包含123绝对值课件pptx、有理数大单元教学设计docx、123绝对值教学设计docx等3份课件配套教学资源,其中PPT共26页, 欢迎下载使用。
这是一份初中数学湘教版(2024)七年级上册(2024)1.2 数轴、相反数与绝对值完美版ppt课件,共14页。PPT课件主要包含了教学目标,新课导入,新知探究,绝对值的概念,非负数,本课小结,绝对值的性质,课堂小测等内容,欢迎下载使用。
这是一份湘教版1.2.3绝对值评优课ppt课件,文件包含湘教版七上数学123绝对值课件pptx、湘教版七上数学123绝对值教案doc等2份课件配套教学资源,其中PPT共19页, 欢迎下载使用。
