


人教A版 (2019)选择性必修 第三册6.3 二项式定理学案
展开
这是一份人教A版 (2019)选择性必修 第三册6.3 二项式定理学案,共8页。学案主要包含了典例解析等内容,欢迎下载使用。
1. 能记住二项式系数的性质,并能灵活运用性质解决相关问题.
2.会用赋值法求二项展开式系数的和,注意区分项的系数和二项式系数.
重点: 二项式系数的性质(对称性、增减性与最大值和各二项式系数的和);
难点:理解增减性与最大值时,根据n的奇偶性确定相应的分界点;
利用赋值法证明二项式系数的性质,数学思想方法的渗透.
1.二项式定理
(a+b)n=____________________________________________ (n∈N*).
(1)这个公式所表示的规律叫做二项式定理.
(2)展开式:等号右边的多项式叫做(a+b)n的二项展开式,展开式中一共有______项.
(3)二项式系数:各项的系数____ (k∈{0,1,2,…,n})叫做二项式系数.
Ceq \\al(0,n)an+Ceq \\al(1,n)an-1b+Ceq \\al(2,n)an-2b2+…+Ceq \\al(k,n)an-kbk+…+Ceq \\al(n,n)bn
n+1 ;Ceq \\al(k,n)
2.二项展开式的通项公式
(a+b)n展开式的第______项叫做二项展开式的通项,记作Tk+1=______.
k+1 ;Ceq \\al(k,n)an-kbk
3. 二项式系数的性质
(1).对称性
与首末两端“等距离”的两个二项式系数相等,即
.
(2).增减性与最大值
当k时,随k的增加而减小.当n是偶数时,中间的一项取得最大值;当n是奇数时,中间的两项相等,且同时取得最大值.
(3).各二项式系数的和
+…+=2n.
1. 在(a+b)8的展开式中,二项式系数最大的项为 ,在(a+b)9的展开式中,二项式系数最大的项为 .
2. A=+…与B=+…的大小关系是( )
A.A>B B.A=B C.A
相关学案
这是一份高中数学人教A版 (2019)选择性必修 第三册6.3 二项式定理学案设计,文件包含631二项式定理+632二项式系数的性质-知识点精讲原卷版-A4pdf、631二项式定理+632二项式系数的性质-知识点精讲详解版-A4pdf等2份学案配套教学资源,其中学案共14页, 欢迎下载使用。
这是一份高中数学人教A版 (2019)选择性必修 第三册6.3 二项式定理学案设计,共47页。学案主要包含了即学即练1,即学即练2,即学即练3,即学即练4,即学即练5等内容,欢迎下载使用。
这是一份高中数学人教A版 (2019)选择性必修 第三册6.3 二项式定理优秀学案设计,文件包含人教A版数学高二选择性必修第三册632二项式系数的性质导学案原卷版docx、人教A版数学高二选择性必修第三册632二项式系数的性质导学案解析版docx等2份学案配套教学资源,其中学案共19页, 欢迎下载使用。
