开学活动
搜索
    上传资料 赚现金

    2025年高考数学核心考点归纳第81讲、圆锥曲线拓展题型一特训(学生版+解析)

    2025年高考数学核心考点归纳第81讲、圆锥曲线拓展题型一特训(学生版+解析)第1页
    2025年高考数学核心考点归纳第81讲、圆锥曲线拓展题型一特训(学生版+解析)第2页
    2025年高考数学核心考点归纳第81讲、圆锥曲线拓展题型一特训(学生版+解析)第3页
    还剩38页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025年高考数学核心考点归纳第81讲、圆锥曲线拓展题型一特训(学生版+解析)

    展开

    这是一份2025年高考数学核心考点归纳第81讲、圆锥曲线拓展题型一特训(学生版+解析),共41页。试卷主要包含了椭圆方程,平面上有一点,阅读材料,两点等内容,欢迎下载使用。
    题型一:定比点差法
    例1.已知椭圆()的离心率为,过右焦点且斜率为()的直线与相交于,两点,若,求
    例2.已知,过点的直线交椭圆于,(可以重合),求取值范围.
    例3.已知椭圆的左右焦点分别为,,,,是椭圆上的三个动点,且,若,求的值.
    变式1.设,分别为椭圆的左、右焦点,点,在椭圆上,若,求点的坐标
    变式2.已知椭圆,设过点的直线与椭圆交于,,点是线段上的点,且,求点的轨迹方程.
    题型二:齐次化
    例4.已知抛物线,过点的直线与抛物线交于P,Q两点,为坐标原点.证明:.
    例5.如图,椭圆,经过点,且斜率为的直线与椭圆交于不同的两点P,Q(均异于点,证明:直线AP与AQ的斜率之和为2.
    例6.已知椭圆,设直线不经过点且与相交于A,B两点.若直线与直线的斜率的和为,证明:直线过定点.
    变式3.已知椭圆,,,为上的两个不同的动点,,求证:直线过定点.
    题型三:极点极线问题
    例7.(2024·全国·高三专题练习)椭圆方程,平面上有一点.定义直线方程是椭圆在点处的极线.已知椭圆方程.
    (1)若在椭圆上,求椭圆在点处的极线方程;
    (2)若在椭圆上,证明:椭圆在点处的极线就是过点的切线;
    (3)若过点分别作椭圆的两条切线和一条割线,切点为,,割线交椭圆于,两点,过点,分别作椭圆的两条切线,且相交于点.证明:,,三点共线.
    例8.(2024·全国·高三专题练习)阅读材料:
    (一)极点与极线的代数定义;已知圆锥曲线G:,则称点P(,)和直线l:是圆锥曲线G的一对极点和极线.事实上,在圆锥曲线方程中,以替换,以替换x(另一变量y也是如此),即可得到点P(,)对应的极线方程.特别地,对于椭圆,与点P(,)对应的极线方程为;对于双曲线,与点P(,)对应的极线方程为;对于抛物线,与点P(,)对应的极线方程为.即对于确定的圆锥曲线,每一对极点与极线是一一对应的关系.
    (二)极点与极线的基本性质、定理
    ①当P在圆锥曲线G上时,其极线l是曲线G在点P处的切线;
    ②当P在G外时,其极线l是曲线G从点P所引两条切线的切点所确定的直线(即切点弦所在直线);
    ③当P在G内时,其极线l是曲线G过点P的割线两端点处的切线交点的轨迹.
    结合阅读材料回答下面的问题:
    (1)已知椭圆C:经过点P(4,0),离心率是,求椭圆C的方程并写出与点P对应的极线方程;
    (2)已知Q是直线l:上的一个动点,过点Q向(1)中椭圆C引两条切线,切点分别为M,N,是否存在定点T恒在直线MN上,若存在,当时,求直线MN的方程;若不存在,请说明理由.
    例9.(2024秋·北京·高三中关村中学校考开学考试)已知椭圆M:(a>b>0)过A(-2,0),B(0,1)两点.
    (1)求椭圆M的离心率;
    (2)设椭圆M的右顶点为C,点P在椭圆M上(P不与椭圆M的顶点重合),直线AB与直线CP交于点Q,直线BP交x轴于点S,求证:直线SQ过定点.
    变式4.(2024·全国·高三专题练习)若双曲线与椭圆共顶点,且它们的离心率之积为.
    (1)求椭圆C的标准方程;
    (2)若椭圆C的左、右顶点分别为,,直线l与椭圆C交于P、Q两点,设直线与的斜率分别为,,且.试问,直线l是否过定点?若是,求出定点的坐标;若不是,请说明理由.
    变式5.(2024·全国·高三专题练习)已知椭圆的离心率为,且过点,A,B分别为椭圆E的左,右顶点,P为直线上的动点(不在x轴上),与椭圆E的另一交点为C,与椭圆E的另一交点为D,记直线与的斜率分别为,.
    (Ⅰ)求椭圆E的方程;
    (Ⅱ)求的值;
    (Ⅲ)证明:直线过一个定点,并求出此定点的坐标.
    题型四:蝴蝶问题
    例10.(2003·全国·高考真题)如图,椭圆的长轴与x轴平行,短轴在y轴上,中心为.
    (1)写出椭圆的方程,求椭圆的焦点坐标及离心率;
    (2)直线交椭圆于两点;直线交椭圆于两点,.求证:;
    (3)对于(2)中的中的在,,,,设交轴于点,交轴于点,求证:(证明过程不考虑或垂直于轴的情形)
    例11.(2024·全国·高三专题练习)已知椭圆(),四点,,,,中恰有三点在椭圆上.
    (1)求椭圆的方程;
    (2)蝴蝶定理:如图1,为圆的一条弦,是的中点,过作圆的两条弦,.若,分别与直线交于点,,则.
    该结论可推广到椭圆.如图2所示,假定在椭圆中,弦的中点的坐标为,且两条弦,所在直线斜率存在,证明:.
    例12.(2021·全国·高三专题练习)(蝴蝶定理)过圆弦的中点M,任意作两弦和,与交弦于P、Q,求证:.
    变式6.(2024·全国·高三专题练习)蝴蝶定理因其美妙的构图,像是一只翩翩起舞的蝴蝶,一代代数学名家蜂拥而证,正所谓花若芬芳蜂蝶自来.如图,已知圆的方程为,直线与圆交于,,直线与圆交于,.原点在圆内.
    (1)求证:.
    (2)设交轴于点,交轴于点.求证:.
    变式7.(2024·陕西西安·陕西师大附中校考模拟预测)已知椭圆的左、右顶点分别为点,,且,椭圆离心率为.
    (1)求椭圆的方程;
    (2)过椭圆的右焦点,且斜率不为的直线交椭圆于,两点,直线,的交于点,求证:点在直线上.
    变式8.(2024·全国·高三专题练习)已知椭圆C:+=1(a>b>0)的左、右顶点分别为A,B,离心率为,点P为椭圆上一点.
    (1)求椭圆C的标准方程;
    (2)如图,过点C(0,1)且斜率大于1的直线l与椭圆交于M,N两点,记直线AM的斜率为k1,直线BN的斜率为k2,若k1=2k2,求直线l斜率的值.
    变式9.(2021秋·广东深圳·高二校考期中)已知椭圆的右焦点是,过点F的直线交椭圆C于A,B两点,若线段AB中点Q的坐标为.
    (1)求椭圆C的方程;
    (2)已知是椭圆C的下顶点,如果直线y=kx+1(k≠0)交椭圆C于不同的两点M,N,且M,N都在以P为圆心的圆上,求k的值;
    (3)过点作一条非水平直线交椭圆C于R、S两点,若A,B为椭圆的左右顶点,记直线AR、BS的斜率分别为k1、k2,则是否为定值,若是,求出该定值,若不是,请说明理由.
    变式10.(2024·全国·高三专题练习)如图,已知椭圆的离心率为,,分别是椭圆的左、右顶点,右焦点,,过且斜率为的直线与椭圆相交于,两点,在轴上方.
    (1)求椭圆的标准方程;
    (2)记,的面积分别为,,若,求的值;
    (3)设线段的中点为,直线与直线相交于点,记直线,,的斜率分别为,,,求的值.
    变式11.(2024秋·福建莆田·高二莆田华侨中学校考期末)已知点在椭圆:上,为坐标原点,直线:的斜率与直线的斜率乘积为
    (1)求椭圆的方程;
    (2)不经过点的直线:(且)与椭圆交于,两点,关于原点的对称点为(与点不重合),直线,与轴分别交于两点,,求证:.
    变式12.(2022·全国·高三专题练习)极线是高等几何中的重要概念,它是圆锥曲线的一种基本特征.对于圆,与点对应的极线方程为,我们还知道如果点在圆上,极线方程即为切线方程;如果点在圆外,极线方程即为切点弦所在直线方程.同样,对于椭圆,与点对应的极线方程为.如上图,已知椭圆C:,,过点P作椭圆C的两条切线PA,PB,切点分别为A,B,则直线AB的方程为 ;直线AB与OP交于点M,则的最小值是 .
    本资料陈飞老师主编,可联系微信:renbenjiayu2 ,加入陈老师高中数学永久QQ资料群下载(群内99%以上资料为纯wrd解析版),群内资料每周持续更新!
    高一资料群内容:
    1、高一上学期同步讲义(wrd+PDF)
    2、高一下学期同步讲义(wrd+PDF)
    3、寒暑假预习讲义(wrd+PDF)
    4、专题分类汇编(纯wrd解析版)
    5、全国名校期中期末考试卷(纯wrd解析版)
    6、期中期末考试串讲(wrd+PDF)
    …………………………………………
    更多内容不断完善
    高二资料群内容:
    1、高二上学期同步讲义(wrd+PDF)
    2、高二下学期同步讲义(wrd+PDF)
    3、寒暑假预习讲义(wrd+PDF)
    4、专题分类汇编(纯wrd解析版)
    5、全国名校期中期末考试卷(纯wrd解析版)
    6、期中期末考试串讲(wrd+PDF)
    …………………………………………
    更多内容不断完善
    高三资料群内容:
    1、高三大一轮复习讲义(wrd+PDF)
    2、高三二轮冲刺讲义(wrd+PDF)
    3、高三三轮押题(纯wrd解析版)
    4、高考真题分类汇编(纯wrd解析版)
    5、专题分类汇编(纯wrd解析版)
    6、圆锥曲线专题(wrd+PDF)
    7、导数专题(wrd+PDF)
    8、全国名校期中期末一模二模(纯wrd解析版)
    …………………………………………
    更多内容不断完善
    第81讲 圆锥曲线拓展题型一
    必考题型全归纳
    题型一:定比点差法
    例1.已知椭圆()的离心率为,过右焦点且斜率为()的直线与相交于,两点,若,求
    【解析】由,可设椭圆为(),
    设,,,由,
    所以,.

    由(1)-(3)得,
    又.
    又.
    例2.已知,过点的直线交椭圆于,(可以重合),求取值范围.
    【解析】设,,,由,
    所以.

    由(1)-(3)得:
    ,又,
    又,从而.
    例3.已知椭圆的左右焦点分别为,,,,是椭圆上的三个动点,且,若,求的值.
    【解析】设,,,,由,得
    ①满足
    满足
    ②由
    ③由(1)-(3)得:
    ,又
    ,同理可得

    变式1.设,分别为椭圆的左、右焦点,点,在椭圆上,若,求点的坐标
    【解析】记直线反向延长交椭圆于,由及椭圆对称性得,
    设,,.
    ①由定比分点公式得

    ②又
    ③由(1)-(3)得,
    又.
    变式2.已知椭圆,设过点的直线与椭圆交于,,点是线段上的点,且,求点的轨迹方程.
    【解析】设,,

    ,记,
    即,.
    ①,由定比分点得:
    ,由定比分点得
    ②又
    ③由(1)-(3)得:
    ,即.
    题型二:齐次化
    例4.已知抛物线,过点的直线与抛物线交于P,Q两点,为坐标原点.证明:.
    【解析】直线
    由,得
    则由,得:,
    整理得:,即:.
    所以,
    则,即:.
    例5.如图,椭圆,经过点,且斜率为的直线与椭圆交于不同的两点P,Q(均异于点,证明:直线AP与AQ的斜率之和为2.
    【解析】设直线
    则.
    由,
    得:.
    则,
    故.
    所以.
    即.
    例6.已知椭圆,设直线不经过点且与相交于A,B两点.若直线与直线的斜率的和为,证明:直线过定点.
    【解析】设直线......(1)
    由,得
    即:......(2)
    由(1)(2)得:
    整理得:
    则,
    则,代入直线,得:
    显然,直线过定点.
    变式3.已知椭圆,,,为上的两个不同的动点,,求证:直线过定点.
    【解析】设直线方程为:

    即,又因为
    化简得或(舍去).
    即直线为,即直线过定点.
    题型三:极点极线问题
    例7.(2024·全国·高三专题练习)椭圆方程,平面上有一点.定义直线方程是椭圆在点处的极线.已知椭圆方程.
    (1)若在椭圆上,求椭圆在点处的极线方程;
    (2)若在椭圆上,证明:椭圆在点处的极线就是过点的切线;
    (3)若过点分别作椭圆的两条切线和一条割线,切点为,,割线交椭圆于,两点,过点,分别作椭圆的两条切线,且相交于点.证明:,,三点共线.
    【解析】(1)由题意知,当时,,所以或.
    由定义可知椭圆在点处的极线方程为,
    所以椭圆在点处的极线方程为,即
    点处的极线方程为,即
    (2)因为在椭圆上,所以,
    由定义可知椭圆在点处的极线方程为,
    当时,,此时极线方程为,所以处的极线就是过点的切线.
    当时,极线方程为.
    联立,得.

    综上所述,椭圆在点处的极线就是过点的切线;
    (3)设点,,,
    由(2)可知,过点的切线方程为,
    过点N的切线方程为.
    因为,都过点,所以有,
    则割线的方程为;
    同理可得过点的两条切线的切点弦的方程为.
    又因为割线过点,代入割线方程得.
    所以,,三点共线,都在直线上.
    例8.(2024·全国·高三专题练习)阅读材料:
    (一)极点与极线的代数定义;已知圆锥曲线G:,则称点P(,)和直线l:是圆锥曲线G的一对极点和极线.事实上,在圆锥曲线方程中,以替换,以替换x(另一变量y也是如此),即可得到点P(,)对应的极线方程.特别地,对于椭圆,与点P(,)对应的极线方程为;对于双曲线,与点P(,)对应的极线方程为;对于抛物线,与点P(,)对应的极线方程为.即对于确定的圆锥曲线,每一对极点与极线是一一对应的关系.
    (二)极点与极线的基本性质、定理
    ①当P在圆锥曲线G上时,其极线l是曲线G在点P处的切线;
    ②当P在G外时,其极线l是曲线G从点P所引两条切线的切点所确定的直线(即切点弦所在直线);
    ③当P在G内时,其极线l是曲线G过点P的割线两端点处的切线交点的轨迹.
    结合阅读材料回答下面的问题:
    (1)已知椭圆C:经过点P(4,0),离心率是,求椭圆C的方程并写出与点P对应的极线方程;
    (2)已知Q是直线l:上的一个动点,过点Q向(1)中椭圆C引两条切线,切点分别为M,N,是否存在定点T恒在直线MN上,若存在,当时,求直线MN的方程;若不存在,请说明理由.
    【解析】(1)因为椭圆过点P(4,0),
    则,得,又,
    所以,所以,
    所以椭圆C的方程为.
    根据阅读材料,与点P对应的极线方程为,即;
    (2)由题意,设点Q的坐标为(,),
    因为点Q在直线上运动,所以,
    联立,得,
    ,该方程无实数根,
    所以直线与椭圆C相离,即点Q在椭圆C外,
    又QM,QN都与椭圆C相切,
    所以点Q和直线MN是椭圆C的一对极点和极线.
    对于椭圆,与点Q(,)对应的极线方程为,
    将代入,整理得,
    又因为定点T的坐标与的取值无关,
    所以,解得,
    所以存在定点T(2,1)恒在直线MN上.
    当时,T是线段MN的中点,
    设,直线MN的斜率为,
    则,两式相减,整理得,即,
    所以当时,直线MN的方程为,即.
    例9.(2024秋·北京·高三中关村中学校考开学考试)已知椭圆M:(a>b>0)过A(-2,0),B(0,1)两点.
    (1)求椭圆M的离心率;
    (2)设椭圆M的右顶点为C,点P在椭圆M上(P不与椭圆M的顶点重合),直线AB与直线CP交于点Q,直线BP交x轴于点S,求证:直线SQ过定点.
    【解析】(1)因为点,都在椭圆上,
    所以,.
    所以.
    所以椭圆的离心率.
    (2)由(1)知椭圆的方程为,.
    由题意知:直线的方程为.
    设(,),,.
    因为三点共线,所以有,,
    所以.
    所以.
    所以.
    因为三点共线,
    所以,即.
    所以.
    所以直线的方程为,
    即.
    又因为点在椭圆上,所以.
    所以直线的方程为.
    所以直线过定点.
    变式4.(2024·全国·高三专题练习)若双曲线与椭圆共顶点,且它们的离心率之积为.
    (1)求椭圆C的标准方程;
    (2)若椭圆C的左、右顶点分别为,,直线l与椭圆C交于P、Q两点,设直线与的斜率分别为,,且.试问,直线l是否过定点?若是,求出定点的坐标;若不是,请说明理由.
    【解析】(1)由已知得双曲线的离心率为,又两曲线离心率之积为,所以椭圆的离心率为;
    由题意知,所以,.
    所以椭圆的标准万程为.
    (2)当直线l的斜率为零时,由对称性可知:
    ,不满足,
    故直线l的斜率不为零.设直线l的方程为,
    由,得:,
    因为直线l与椭圆C交于P、Q两点,
    所以,
    整理得:,
    设、,则
    ,,,.
    因为,
    所以,
    整理得:,

    将,代入整理得:
    要使上式恒成立,只需,此时满足,
    因此,直线l恒过定点.
    变式5.(2024·全国·高三专题练习)已知椭圆的离心率为,且过点,A,B分别为椭圆E的左,右顶点,P为直线上的动点(不在x轴上),与椭圆E的另一交点为C,与椭圆E的另一交点为D,记直线与的斜率分别为,.
    (Ⅰ)求椭圆E的方程;
    (Ⅱ)求的值;
    (Ⅲ)证明:直线过一个定点,并求出此定点的坐标.
    【解析】(1)由条件可知:且,解得,所以椭圆的方程为;
    (2)因为,设,
    所以,所以;
    (3)设,所以,
    因为,所以,
    所以,所以,所以,所以,
    又因为,所以,
    所以,所以,所以,所以,
    所以,所以,
    所以,所以,
    所以直线过定点.
    题型四:蝴蝶问题
    例10.(2003·全国·高考真题)如图,椭圆的长轴与x轴平行,短轴在y轴上,中心为.
    (1)写出椭圆的方程,求椭圆的焦点坐标及离心率;
    (2)直线交椭圆于两点;直线交椭圆于两点,.求证:;
    (3)对于(2)中的中的在,,,,设交轴于点,交轴于点,求证:(证明过程不考虑或垂直于轴的情形)
    【解析】(1)椭圆的长轴与轴平行,短轴在轴上,中心,
    椭圆方程为
    焦点坐标为,
    离心率
    (2)证明:将直线的方程代入椭圆方程,得
    整理得
    根据韦达定理,得,,
    所以①
    将直线的方程代入椭圆方程,同理可得②
    由 ①、②得
    所以结论成立.
    (3)证明:设点,点
    由、、共线,得
    解得
    由、、共线,同理可得
    由变形得
    所以

    例11.(2024·全国·高三专题练习)已知椭圆(),四点,,,,中恰有三点在椭圆上.
    (1)求椭圆的方程;
    (2)蝴蝶定理:如图1,为圆的一条弦,是的中点,过作圆的两条弦,.若,分别与直线交于点,,则.
    该结论可推广到椭圆.如图2所示,假定在椭圆中,弦的中点的坐标为,且两条弦,所在直线斜率存在,证明:.
    【解析】(1)由于,两点关于轴对称,
    故由题设知经过,两点,
    又由知,不过点,所以点在上,
    因此,解得,
    故椭圆的方程为;
    (2)因点的坐标在轴上,且为的中点,
    所以直线平行于轴,
    设,,,,
    设直线的方程为,代入椭圆,
    得:,
    根据韦达定理得:,,①
    同理,设直线的方程为,代入椭圆,
    得:,
    根据韦达定理得:,,②
    由于、、三点共线,得,,
    同理,由于、、三点共线,得:,结合①和②可得:
    即,所以,即.
    例12.(2021·全国·高三专题练习)(蝴蝶定理)过圆弦的中点M,任意作两弦和,与交弦于P、Q,求证:.
    【解析】如图所示,以为原点,所在直线为x轴建立直角坐标系,设圆方程为
    设直线、的方程分别为,.
    将它们合并为,于是过点C、D、E、F的曲线系方程为
    .
    令,得,即过点C、D、E、F的曲线系与交于点P、Q的横坐标是方程的两根.
    由韦达定理得,即是的中点,故.
    变式6.(2024·全国·高三专题练习)蝴蝶定理因其美妙的构图,像是一只翩翩起舞的蝴蝶,一代代数学名家蜂拥而证,正所谓花若芬芳蜂蝶自来.如图,已知圆的方程为,直线与圆交于,,直线与圆交于,.原点在圆内.
    (1)求证:.
    (2)设交轴于点,交轴于点.求证:.
    【解析】(1)已知圆的方程为,
    直线与圆交于,,联立,
    化简得,
    则,,所以,
    同理线与圆交于,,
    联立 化简得,
    则,,所以,
    故有,所以成立;
    (2)不妨设点,点,
    因为、、三点共线,所以,化简得,
    因为点在直线上,所以,点在直线上,所以,
    则,
    同理因为、、三点共线,所以,化简得,
    因为点在直线上,所以,点在直线上,所以,
    则,
    又由,可得,,
    即,所以,则,
    所以,所以成立.
    变式7.(2024·陕西西安·陕西师大附中校考模拟预测)已知椭圆的左、右顶点分别为点,,且,椭圆离心率为.
    (1)求椭圆的方程;
    (2)过椭圆的右焦点,且斜率不为的直线交椭圆于,两点,直线,的交于点,求证:点在直线上.
    【解析】(1)因为,椭圆离心率为,
    所以,解得,.
    所以椭圆的方程是.
    (2)①若直线的斜率不存在时,如图,
    因为椭圆的右焦点为,所以直线的方程是.
    所以点的坐标是,点的坐标是.
    所以直线的方程是,
    直线的方程是.
    所以直线,的交点的坐标是.
    所以点在直线上.
    ②若直线的斜率存在时,如图.
    设斜率为.所以直线的方程为.
    联立方程组
    消去,整理得.
    显然.不妨设,,
    所以,.
    所以直线的方程是.
    令,得.
    直线的方程是.
    令,得.
    所以
    分子
    .
    .
    所以点在直线上.
    变式8.(2024·全国·高三专题练习)已知椭圆C:+=1(a>b>0)的左、右顶点分别为A,B,离心率为,点P为椭圆上一点.
    (1)求椭圆C的标准方程;
    (2)如图,过点C(0,1)且斜率大于1的直线l与椭圆交于M,N两点,记直线AM的斜率为k1,直线BN的斜率为k2,若k1=2k2,求直线l斜率的值.
    【解析】(1)因为椭圆的离心率为,所以a=2c.
    又因为a2=b2+c2,所以b=c.
    所以椭圆的标准方程为+=1.
    又因为点P为椭圆上一点,所以+=1,解得c=1.
    所以椭圆的标准方程为+=1.
    (2) 由椭圆的对称性可知直线l的斜率一定存在,设其方程为y=kx+1.
    设M(x1,y1),N(x2,y2).
    联立方程组
    消去y可得(3+4k2)x2+8kx-8=0.
    所以由根与系数关系可知x1+x2=-,x1x2=-.
    因为k1=,k2=,且k1=2k2,所以=.
    即=. ①
    又因为M(x1,y1),N(x2,y2)在椭圆上,
    所以= (4-),= (4-). ②
    将②代入①可得:=,即3x1x2+10(x1+x2)+12=0.
    所以3+10+12=0,即12k2-20k+3=0.
    解得k=或k=,又因为k>1,所以k=.
    变式9.(2021秋·广东深圳·高二校考期中)已知椭圆的右焦点是,过点F的直线交椭圆C于A,B两点,若线段AB中点Q的坐标为.
    (1)求椭圆C的方程;
    (2)已知是椭圆C的下顶点,如果直线y=kx+1(k≠0)交椭圆C于不同的两点M,N,且M,N都在以P为圆心的圆上,求k的值;
    (3)过点作一条非水平直线交椭圆C于R、S两点,若A,B为椭圆的左右顶点,记直线AR、BS的斜率分别为k1、k2,则是否为定值,若是,求出该定值,若不是,请说明理由.
    【解析】(1)设,,直线AB的斜率显然存在,则,
    因为线段AB中点Q的坐标为,所以,,
    直线AB的斜率,
    A,B两点在椭圆椭圆C上,
    所以,,两式相减得

    即,
    所以,整理得,①
    又且,②
    由①②可解得,,
    所以椭圆C的方程为.
    (2)由得,
    则,,,
    设M,N中点为,
    则,,
    因为M,N都在以P为圆心的圆上,所以,则点P在线段MN的垂直平分线上,
    依题意,所以线段MN的垂直平分线方程为,
    M,N中点为在此直线上,
    所以有,即,解得.
    所以k的值为.
    (3)依题意有,,,
    设直线的方程为,
    由得,
    则,,

    所以为定值.
    变式10.(2024·全国·高三专题练习)如图,已知椭圆的离心率为,,分别是椭圆的左、右顶点,右焦点,,过且斜率为的直线与椭圆相交于,两点,在轴上方.
    (1)求椭圆的标准方程;
    (2)记,的面积分别为,,若,求的值;
    (3)设线段的中点为,直线与直线相交于点,记直线,,的斜率分别为,,,求的值.
    【解析】(1)设椭圆的焦距为.
    依题意可得,,
    解得,.
    故.
    所以椭圆的标准方程为.
    (2)设点,,,.
    若,则,即有,①
    设直线的方程为,与椭圆方程,
    可得,
    则,,②
    将①代入②可得,解得,
    则;
    (3)由(2)得
    ,,
    所以直线的方程为,
    令,得,即.
    所以.
    所以,


    .
    变式11.(2024秋·福建莆田·高二莆田华侨中学校考期末)已知点在椭圆:上,为坐标原点,直线:的斜率与直线的斜率乘积为
    (1)求椭圆的方程;
    (2)不经过点的直线:(且)与椭圆交于,两点,关于原点的对称点为(与点不重合),直线,与轴分别交于两点,,求证:.
    【解析】(Ⅰ)由题意,,
    即① 又②
    联立①①解得
    所以,椭圆的方程为:.
    (Ⅱ)设,,,由,
    得,
    所以,即,
    又因为,所以,,
    ,,
    解法一:要证明,可转化为证明直线,的斜率互为相反数,只需证明,即证明.



    ∴,∴.
    解法二:要证明,可转化为证明直线,与轴交点、连线中点的纵坐标为,即垂直平分即可.
    直线与的方程分别为:
    ,,
    分别令,得,
    而,同解法一,可得
    ,即垂直平分.
    所以,.
    变式12.(2022·全国·高三专题练习)极线是高等几何中的重要概念,它是圆锥曲线的一种基本特征.对于圆,与点对应的极线方程为,我们还知道如果点在圆上,极线方程即为切线方程;如果点在圆外,极线方程即为切点弦所在直线方程.同样,对于椭圆,与点对应的极线方程为.如上图,已知椭圆C:,,过点P作椭圆C的两条切线PA,PB,切点分别为A,B,则直线AB的方程为 ;直线AB与OP交于点M,则的最小值是 .
    【答案】 (或); .
    【解析】(1)由题得AB:,即,
    (2),,∴的方向向量,
    所以

    即.
    故答案为:;
    本资料陈飞老师主编,可联系微信:renbenjiayu2 ,加入陈老师高中数学永久QQ资料群下载(群内99%以上资料为纯wrd解析版),群内资料每周持续更新!
    高一资料群内容:
    1、高一上学期同步讲义(wrd+PDF)
    2、高一下学期同步讲义(wrd+PDF)
    3、寒暑假预习讲义(wrd+PDF)
    4、专题分类汇编(纯wrd解析版)
    5、全国名校期中期末考试卷(纯wrd解析版)
    6、期中期末考试串讲(wrd+PDF)
    …………………………………………
    更多内容不断完善
    高二资料群内容:
    1、高二上学期同步讲义(wrd+PDF)
    2、高二下学期同步讲义(wrd+PDF)
    3、寒暑假预习讲义(wrd+PDF)
    4、专题分类汇编(纯wrd解析版)
    5、全国名校期中期末考试卷(纯wrd解析版)
    6、期中期末考试串讲(wrd+PDF)
    …………………………………………
    更多内容不断完善
    高三资料群内容:
    1、高三大一轮复习讲义(wrd+PDF)
    2、高三二轮冲刺讲义(wrd+PDF)
    3、高三三轮押题(纯wrd解析版)
    4、高考真题分类汇编(纯wrd解析版)
    5、专题分类汇编(纯wrd解析版)
    6、圆锥曲线专题(wrd+PDF)
    7、导数专题(wrd+PDF)
    8、全国名校期中期末一模二模(纯wrd解析版)
    …………………………………………
    更多内容不断完善

    相关试卷

    2025年高考数学核心考点归纳第83讲、统计特训(学生版+解析):

    这是一份2025年高考数学核心考点归纳第83讲、统计特训(学生版+解析),共78页。试卷主要包含了抽样,用样本估计总体等内容,欢迎下载使用。

    2025年高考数学核心考点归纳第82讲、圆锥曲线题型拓展二特训(学生版+解析):

    这是一份2025年高考数学核心考点归纳第82讲、圆锥曲线题型拓展二特训(学生版+解析),共100页。试卷主要包含了仿射变换问题,非对称韦达问题,光学性质问题,三点共线问题等内容,欢迎下载使用。

    2025年高考数学核心考点归纳第79讲、圆锥曲线中的圆问题特训(学生版+解析):

    这是一份2025年高考数学核心考点归纳第79讲、圆锥曲线中的圆问题特训(学生版+解析),共60页。试卷主要包含了证明四点共圆的方法,全国名校期中期末考试卷,期中期末考试串讲,导数专题,全国名校期中期末一模二模等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map