2019年全国各地中考数学真题分类汇编 专题27 锐角三角函数与特殊角(含解析)
展开专题训练27 锐角三角函数与特殊角
一.选择题
1.2019湖北宜昌3分)如图,在5×4的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,则sin∠BAC的值为( )
A. B. C. D.
【分析】过C作CD⊥AB于D,首先根据勾股定理求出AC,然后在Rt△ACD中即可求出sin∠BAC的值.
【解答】解:如图,过C作CD⊥AB于D,则∠ADC=90°,
∴AC===5.
∴sin∠BAC==.
故选:D.
【点评】本题考查了勾股定理的运用以及锐角三角函数,正确作出辅助线是解题的关键.
2.(2019•山东威海•3分)如图,一个人从山脚下的A点出发,沿山坡小路AB走到山顶B点.已知坡角为20°,山高BC=2千米.用科学计算器计算小路AB的长度,下列按键顺序正确的是( )
A. B.
C. D.
【分析】在△ABC中,通过解直角三角形可得出sinA=,则AB=,即可得出结论.
【解答】解:在△ABC中,sinA=sin20°=,
∴AB==,
∴按键顺序为:2÷sin20=
故选:A.
【点评】本题主要考查解直角三角形的应用﹣坡度坡角问题以及计算器,熟练应用计算器是解题关键.
3.(2019•山东潍坊•3分)如图,四边形ABCD内接于⊙O,AB为直径,AD=CD,过点D作DE⊥AB于点E,连接AC交DE于点F.若sin∠CAB=,DF=5,则BC的长为( )
A.8 B.10 C.12 D.16
【分析】连接BD,如图,先利用圆周角定理证明∠ADE=∠DAC得到FD=FA=5,再根据正弦的定义计算出EF=3,则AE=4,DE=8,接着证明△ADE∽△DBE,利用相似比得到BE=16,所以AB=20,然后在Rt△ABC中利用正弦定义计算出BC的长.
【解答】解:连接BD,如图,
∵AB为直径,
∴∠ADB=∠ACB=90°,
∵∠AD=CD,
∴∠DAC=∠DCA,
而∠DCA=∠ABD,
∴∠DAC=∠ABD,
∵DE⊥AB,
∴∠ABD+∠BDE=90°,
而∠ADE+∠BDE=90°,
∴∠ABD=∠ADE,
∴∠ADE=∠DAC,
∴FD=FA=5,
在Rt△AEF中,∵sin∠CAB==,
∴EF=3,
∴AE==4,DE=5+3=8,
∵∠ADE=∠DBE,∠AED=∠BED,
∴△ADE∽△DBE,
∴DE:BE=AE:DE,即8:BE=4:8,
∴BE=16,
∴AB=4+16=20,
在Rt△ABC中,∵sin∠CAB==,
∴BC=20×=12.
故选:C.
【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了解直角三角形.
二.填空题
1.(2019•湖北省荆门市•3分)计算+|sin30°﹣π0|+= 1﹣ .
【分析】直接利用二次根式的性质以及零指数幂的性质、立方根的性质分别化简得出答案.
【解答】解:原式=2﹣+1﹣﹣
=1﹣.
故答案为:1﹣.
【点评】此题主要考查了实数运算,正确化简各数是解题关键.
2.(2019•湖北省随州市•3分)计算:(π-2019)0-2cos60°=______.
【答案】0
【解析】解:原式=1-2×=1-1=0,故答案为:0
原式利用零指数幂法则,以及特殊角的三角函数值计算即可求出值.
此题考查了实数的运算,熟练掌握运算法则是解本题的关键.
3.(2019•山东临沂•3分)计算:×﹣tan45°= ﹣1 .
【分析】根据二次根式的乘法运算的法则和特殊角的三角函数值计算即可.
【解答】解:×﹣tan45°=﹣1=﹣1,
故答案为:﹣1.
【点评】本题考查了二次根式的混合运算,特殊角的三角函数值,熟记法则是解题的关键.
4.(2019•山东潍坊•3分)如图,Rt△AOB中,∠AOB=90°,顶点A,B分别在反比例函数y=(x>0)与y=(x<0)的图象上,则tan∠BAO的值为 .
【分析】过A作AC⊥x轴,过B作BD⊥x轴于D,于是得到∠BDO=∠ACO=90°,根据反比例函数的性质得到S△BDO=,S△AOC=,根据相似三角形的性质得到=()2==5,求得=,根据三角函数的定义即可得到结论.
【解答】解:过A作AC⊥x轴,过B作BD⊥x轴于D,
则∠BDO=∠ACO=90°,
∵顶点A,B分别在反比例函数y=(x>0)与y=(x<0)的图象上,
∴S△BDO=,S△AOC=,
∵∠AOB=90°,
∴∠BOD+∠DBO=∠BOD+∠AOC=90°,
∴∠DBO=∠AOC,
∴△BDO∽△OCA,
∴=()2==5,
∴=,
∴tan∠BAO==,
故答案为:.
【点评】此题考查了相似三角形的判定与性质、反比例函数的性质以及直角三角形的性质.解题时注意掌握数形结合思想的应用,注意掌握辅助线的作法.
三.解答题
1.(2019•四川省绵阳市•8分)(1)计算:2+|(-)-1|-2tan30°-(π-2019)0;
【答案】解:(1)2+|(-)-1|-2tan30°-(π-2019)0
=+2-2×-1=+2--1=1;
【解析】
(1)根据二次根式的性质、负整数指数幂、零指数幂的运算法则、特殊角的三角函数值计算;
2.(2019•四川省凉山州•5分)计算:tan45°+(﹣)0﹣(﹣)﹣2+|﹣2|.
【分析】分别进行特殊角的三角函数值的运算,任何非零数的零次幂等于1,负整数指数幂以及绝对值的意义化简,然后按照实数的运算法则进行计算求得结果.
【解答】解:原式=1+1﹣2+(2﹣)=.
【点评】本题考查了实数的运算法则,属于基础题,解答本题的关键是熟练掌握负整数指数幂、特殊角的三角函数值等知识.
3.(2019湖南益阳8分)计算:4sin60°+(﹣2019)0﹣()﹣1+|﹣2|.
【分析】原式利用特殊角的三角函数值,零指数幂、负整数指数幂法则,以及绝对值的代数意义计算即可求出值.
【解答】解:原式=4×+1﹣2+2=4﹣1.
【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.
4.(2019浙江丽水6分)计算:|﹣3|﹣2tan60°++()﹣1.
【分析】按顺序依次计算,先把绝对值化简,再算出2tan60°=,然后根据二次根式的性质以及负指数幂化简即可求解.
【解答】解:原式=.
【点评】本题考查了二次根式的混合运算和分式的加减法,设计到的知识点有零指数幂、特殊角的三角函数值,一定要牢记.
5. (2019•贵州省铜仁市•10分)(1)计算:|﹣|+(﹣1)2019+2sin30°+(﹣)0
【解答】解:(1)|﹣|+(﹣1)2019+2sin30°+(﹣)0
=+(﹣1)+2×+1
=+(﹣1)+1+1
=;
6 (2019•黑龙江省齐齐哈尔市•5分)(1)计算:()﹣1+﹣6tan60°+|2﹣4|
【分析】(1)根据实数运算的法则计算即可;
【解答】解:(1)()﹣1+﹣6tan60°+|2﹣4|=3+2﹣6×+4﹣2=1;