2019年全国各地中考数学真题分类汇编 专题20 三角形的边与角(命题知识)(含解析)
展开专题训练20 三角形的边与角
一.选择题
1.(2019•湖北省荆门市•3分)将一副直角三角板按如图所示的位置摆放,使得它们的直角边互相垂直,则∠1的度数是
( )
A.95° B.100° C.105° D.110°
【分析】根据题意求出∠2、∠4,根据对顶角的性质、三角形的外角性质计算即可.
【解答】解:由题意得,∠2=45°,∠4=90°﹣30°=60°,
∴∠3=∠2=45°,
由三角形的外角性质可知,∠1=∠3+∠4=105°,
故选:C.
【点评】本题考查的是三角形的外角性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.
2.(2019浙江丽水3分)若长度分别为a,3,5的三条线段能组成一个三角形,则a的值可以是( )
A.1 B.2 C.3 D.8
【分析】根据三角形三边关系定理得出5﹣3<a<5+3,求出即可.
【解答】解:由三角形三边关系定理得:5﹣3<a<5+3,
即2<a<8,
即符合的只有3,
故选:C.
【点评】本题考查了三角形三边关系定理,能根据定理得出5﹣3<a<5+3是解此题的关键,注意:三角形的两边之和大于第三边,三角形的两边之差小于第三边.
3 (2019•广西北部湾•3分)将一副三角板按如图所示的位置摆放在直尺上,则∠1的度数为 ( )
A. 600 B. 650 C.750 D.850
【答案】C
【解析】
解:如图:
∵∠BCA=60°,∠DCE=45°,
∴∠2=180°-60°-45°=75°,
∵HF∥BC,
∴∠1=∠2=75°,
故选:C.
利用三角形外角性质(三角形的一个外角等于不相邻的两个内角和)解题或利用三角形内角和解题皆可.
主要考查了一副三角板所对应的角度是60°,45°,30°,90°和三角形外角的性质.本题容易,解法很灵活.
4. (2019•黑龙江省齐齐哈尔市•3分)如图,直线a∥b,将一块含30°角(∠BAC=30°)的直角三角尺按图中方式放置,其中A和C两点分别落在直线a和b上.若∠1=20°,则∠2的度数为( )
A.20° B.30° C.40° D.50°
【分析】直接利用平行线的性质结合三角形内角和定理得出答案.
【解答】解:∵直线a∥b,
∴∠1+∠BCA+∠2+∠BAC=180°,
∵∠BAC=30°,∠BCA=90°,∠1=20°,
∴∠2=40°.
故选:C.
5.(2019•山东青岛•3分)如图,BD是△ABC的角平分线,AE⊥BD,垂足为F.若∠ABC=35°,∠C=50°,则∠CDE的度数为( )
A.35° B.40° C.45° D.50°
【分析】根据角平分线的定义和垂直的定义得到∠ABD=∠EBD,∠AFB=∠EFB,根据全等三角形的性质得到AF=EF,AB=BE,求得AD=DE,根据三角形的内角和得到∠BAC=180°﹣∠ABC﹣∠C=95°,根据全等三角形的性质得到∠BED=∠BAD=95°,根据四边形的内角和平角的定义即可得到结论.
【解答】解:∵BD是△ABC的角平分线,AE⊥BD,
∴∠ABD=∠EBD,∠AFB=∠EFB,
∵BF=BF,
∴△ABF∽△EBF(ASA),
∴AF=EF,AB=BE,
∴AD=DE,
∵∠ABC=35°,∠C=50°,
∴∠BAC=180°﹣∠ABC﹣∠C=95°,
在△DAB与△DEB中,
∴△ABD≌△EAD(SSS),
∴∠BED=∠BAD=95°,
∴∠ADE=360°﹣95°﹣95°﹣35°=145°,
∴∠CDE=180°﹣∠ADE=35°,
故选:A.
【点评】本题考查了三角形的内角和,全等三角形的判定和性质,三角形的外角的性质,熟练掌握全等三角形的判定和性质是解题的关键.
6.(2019•浙江丽水•3分)若长度分别为a,3,5的三条线段能组成一个三角形,则a的值可以是( )
A.1 B.2 C.3 D.8
【考点】三角形.
【分析】根据三角形三边关系定理得出5-3<a<5+3,求出即可.
【解答】解:由三角形三边关系定理得:5-3<a<5+3,即2<a<8,符合条件的a的值只有3,故选C.
【点评】本题考查了三角形三边关系定理,能根据定理得出5-3<a<5+3是解此题的关键,注意:三角形的两边之和大于第三边,三角形的两边之差小于第三边.5.
7. 2019湖北荆门)(3分)将一副直角三角板按如图所示的位置摆放,使得它们的直角边互相垂直,则∠1的度数是
( )
A.95° B.100° C.105° D.110°
【分析】根据题意求出∠2、∠4,根据对顶角的性质、三角形的外角性质计算即可.
【解答】解:由题意得,∠2=45°,∠4=90°﹣30°=60°,
∴∠3=∠2=45°,
由三角形的外角性质可知,∠1=∠3+∠4=105°,
故选:C.
【点评】本题考查的是三角形的外角性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.
二.填空题
1.(2019湖南益阳4分)若一个多边形的内角和与外角和之和是900°,则该多边形的边数是 5 .
【分析】本题需先根据已知条件以及多边形的外角和是360°,解出内角和的度数,再根据内角和度数的计算公式即可求出边数.
【解答】解:∵多边形的内角和与外角和的总和为900°,多边形的外角和是360°,
∴多边形的内角和是900﹣360=540°,
∴多边形的边数是:540°÷180°+2=3+2=5.
故答案为:5.
【点评】本题主要考查了多边形内角与外角,在解题时要根据外角和的度数以及内角和度数的计算公式解出本题即可.
2. (2019•广东广州•3分)一副三角板如图放置,将三角板ADE绕点A逆时针旋转α(0°<α<90°),使得三角板ADE的一边所在的直线与BC垂直,则α的度数为 15°或45° .
【分析】分情况讨论:①DE⊥BC;②AD⊥BC.
【解答】解:分情况讨论:
①当DE⊥BC时,∠BAD=75°,∴α=90°﹣∠BAD=15°;
②当AD⊥BC时,∠BAD=45°,即α=45°.
故答案为:15°或45°
【点评】本题主要考查了垂直的定义,旋转的定义以及一副三角板的各个角的度数,理清定义是解答本题的关键.3.
3.(2019•山东威海•3分)把一块含有45°角的直角三角板与两条长边平行的直尺如图放置(直角顶点在直尺的一条长边上).若∠1=23°,则∠2= 68 °.
【分析】由等腰直角三角形的性质得出∠A=∠C=45°,由三角形的外角性质得出∠AGB=68°,再由平行线的性质即可得出∠2的度数.
【解答】解:∵△ABC是含有45°角的直角三角板,
∴∠A=∠C=45°,
∵∠1=23°,
∴∠AGB=∠C+∠1=68°,
∵EF∥BD,
∴∠2=∠AGB=68°;
故答案为:68.
【点评】此题主要考查了等腰直角三角形的性质、平行线的性质以及三角形的外角性质,关键是掌握两直线平行,同位角相等.6.
4.(2019黑龙江省绥化3分)如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A= 度.
答案:36
考点:等边对等角,三角形内角和定理。
解析:设∠A为x度,
因为BD=AD,所以,∠ABD=∠A,
因为BD=BC,所以,∠C=∠BDC=2x,
因为AB=AC,所以,∠ABC=∠C=2x,
所以,∠DBC=2x-x=x,
在三角形DBC中,
x+2x+2x=180°,
解得: x=36°
三.解答题
1. (2019·贵州安顺·12分)(1)如图①,在四边形ABCD中,AB∥CD,点E是BC的中点,若AE是∠BAD的平分线,试判断AB,AD,DC之间的等量关系.
解决此问题可以用如下方法:延长AE交DC的延长线于点F,易证△AEB≌△FEC得到AB=FC,从而把AB,AD,DC转化在一个三角形中即可判断.
AB,AD,DC之间的等量关系 ;
(2)问题探究:如图②,在四边形ABCD中,AB∥CD,AF与DC的延长线交于点F,点E是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,并证明你的结论.
【解答】解:(1)AD=AB+DC
理由如下:∵AE是∠BAD的平分线
∴∠DAE=∠BAE
∵AB∥CD
∴∠F=∠BAE
∴∠DAF=∠F
∴AD=DF,
∵点E是BC的中点
∴CE=BE,且∠F=∠BAE,∠AEB=∠CEF
∴△CEF≌△BEA(AAS)
∴AB=CF
∴AD=CD+CF=CD+AB
(2)AB=AF+CF
理由如下:如图②,延长AE交DF的延长线于点G
∵E是BC的中点,
∴CE=BE,
∵AB∥DC,
∴∠BAE=∠G.且BE=CE,∠AEB=∠GEC
∴△AEB≌△GEC(AAS)
∴AB=GC
∵AE是∠BAF的平分线
∴∠BAG=∠FAG,
∵∠BAG∠G,
∴∠FAG=∠G,
∴FA=FG,
∵CG=CF+FG,
∴AB=AF+CF