还剩24页未读,
继续阅读
福建省南安第一中学2019-2020学年高二上学期第一次阶段考试化学试题化学(解析版)
展开
福建省南安第一中学2019-2020学年高二上学期第一次阶段考试试题
本试卷考试内容为:化学反应原理。分第I卷(选择题)和第II卷,共6页,满分100分,考试时间90分钟。
注意事项:
1.答题前,考生务必先将自己的姓名、准考证号填写在答题纸上。
2.考生作答时,请将答案答在答题纸上,在本试卷上答题无效。按照题号在各题的答题区域内作答,超出答题区域书写的答案无效。
3.答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚(英语科选择题答案使用2B铅笔填涂,如需改动,用橡皮擦干净后,再选涂其它答案标号)。
4.保持答题纸纸面清洁,不破损。考试结束后,将本试卷自行保存,答题纸交回。
相对原子质量:O:16 Na: 23 Mg:24 S:32 Cu:64 Ag:108 Ba:137
第I卷(选择题 共48分)
一.选择题:本大题共16小题,每小题3分,共48分。在每小题给出的四个选项中,只有1项符合题目要求。
1.如图是中国在南极建设的第四个科学考察站——泰山站。为了延长科学考察站基础设施使用寿命,钢铁设备表面镶嵌一些金属块(M)。下列说法正确的是( )
A. 金属块M可能是铜,发生氧化反应
B. 这种保护方法叫牺牲阳极阴极保护法
C. 科考考察站里的设备在潮湿空气中主要发生化学腐蚀
D. 若采用外加电流的阴极保护法,设备与电源正极相连
【答案】B
【解析】
【详解】A.如果金属块M是铜,铜与钢铁设备构成原电池时,铁为负极,腐蚀速率加快,故A错误;
B.为了延长科学考察站基础设施使用寿命,钢铁设备表面镶嵌一些金属块(M),M应该充当原电池负极,这种保护方法叫牺牲阳极的阴极保护法,故B正确;
C.科考考察站里的设备在潮湿空气中主要发生电化学腐蚀,故C错误;
D.若采用外加电流的阴极保护法,钢铁设备应该与电源负极相连,充当电解池的阴极,被保护,故D错误;
故选B。
2.成语是中国传统文化的瑰宝。铜墙铁壁、铜心铁胆、金戈铁马、百炼成钢等成语向人传递正能量。工业上,冶炼铁的有关热化学方程式如下:①C(s)+O2(g)=CO2(g) △H1=akJ·mol-1;②CO2(g)+C(s)=2CO(g) △H2=bkJ·mol-1;③Fe2O3(s)+3CO(g)=2Fe(s)+3CO2(g) △H3=ckJ·mol-1;④2Fe2O3(s)+3C(s)=4Fe(s)+3CO2(g ) △H4=dkJ·mol-1(上述热化学方程式中,a,b,c,d均不等于0)下列说法正确的是( )
A. b B. CO(g)+ 1/2O2(g)= CO2(g) △H
C. d=3c+2b
D. C(s)+ 1/2O2(g)=CO (g) △H=(a+b)/2kJ·mol-1
【答案】D
【解析】
【详解】A,反应①属于放热反应,a<0,反应②属于吸热反应,b>0,所以,b>a,A项错误;
B, 根据①式可知, 完全燃烧生成时燃烧热是,燃烧生成时放出一部分热量,燃烧生成也放热,说明燃烧放出的热量一定大于燃烧放出的热量,由于放热反应的反应热为负值,因此,B项错误;
C, 根据盖斯定律易知,②3+③2=④,所以,d=3b+2c,C项错误;
D, ①+②得,则该反应的,D项正确;
答案选D。
3.如图所示,把盛有几小块镁片的试管放入盛有25℃的饱和石灰水的烧杯中,再用滴管向试管中滴入2 mL的稀盐酸。下列对烧杯中的实验现象的描述及原因说明正确的是( )
A. 烧杯中出现白色浑浊,原因是试管中的反应放出热量使烧杯中饱和石灰水温度升高,溶质析出
B. 烧杯中出现白色浑浊,原因是试管中的反应吸收热量使烧杯中饱和石灰水温度降低,溶质析出
C. 烧杯中没有任何现象,原因是试管中的反应对烧杯中饱和石灰水不会产生任何影响
D. 烧杯中没有任何现象,原因是试管中的反应既不放出热量,也不吸收热量
【答案】A
【解析】
【分析】镁与盐酸反应生成氯化镁和氢气,反应放热,温度升高。
【详解】A. 氢氧化钙的溶解度随温度升高而降低,试管中的反应放出热量使烧杯中饱和石灰水温度升高,氢氧化钙析出,故A正确;
B. 镁与盐酸反应生成氯化镁和氢气,反应放热,温度升高,故B错误;
C. 氢氧化钙的溶解度随温度升高而降低,试管中的反应放出热量使烧杯中饱和石灰水温度升高,氢氧化钙析出,溶液变浑浊,故C错误;
D. 镁与盐酸反应生成氯化镁和氢气,反应放热,试管中的反应放出热量使烧杯中饱和石灰水温度升高,氢氧化钙析出,溶液变浑浊,故D错误。答案选A。
4.将5 mL 0.005 mol/L FeCl3溶液和5 mL 0.015 mol/L KSCN溶液混合,达到平衡后呈红色。再将混合液分为5份,分别进行如下实验:
下列说法不正确的是( )
A. 对比实验①和②,为了证明增加反应物浓度,平衡发生正向移动
B. 对比实验①和③,为了证明增加反应物浓度,平衡发生逆向移动
C. 对比实验①和④,为了证明增加反应物浓度,平衡发生正向移动
D. 对比实验①和⑤,为了证明减少反应物浓度,平衡发生逆向移动
【答案】B
【解析】
【分析】实验①为对照组,控制反应溶液的总体积相同,在其它条件不变时,只改变影响平衡的一个条件,判断平衡的移动方向,则可得出该条件对平衡的影响,据此分析可得结论。
【详解】A.实验②与①对比,只改变了Fe3+浓度,故A说法正确;
B.FeCl3溶液和KSCN溶液反应的本质是Fe3++3SCN-Fe(SCN)3,改变钾离子或氯离子的浓度对平衡没有影响,故B说法错误;
C.实验④与①对比,只改变的反应物SCN-的浓度,故C说法正确;
D.在原平衡体系中加入NaOH溶液,Fe3+与之反应生成Fe(OH)3沉淀,溶液中Fe3+的浓度减小,故D说法正确;
答案选B。
5.利用光伏电池提供电能处理废水中污染物(有机酸阴离子用R-表示),并回收有机酸HR,装置如图所示。下列说法错误的是( )
A. 在光伏电池中a极为正极
B. 石墨(2)极附近溶液的pH降低
C. HR溶液:c2<c1
D. 若两极共收集3mol气体,则理论上转移4mol电子
【答案】B
【解析】
【详解】A.根据电子移动的方向,可知在光伏电池中a极为正极,b为负极,故A正确;
B. 石墨(2)为电解池的阴极,H+得电子变成氢气,使c(H+)降低,pH升高,故B错误;
C. 石墨(1)为电解池的阳极,OH-失电子变成氧气,使得c(H+)升高,透过阳膜进入浓缩室;石墨(2)为电解池的阴极,H+得电子变成氢气,R-透过阴膜进入浓缩室,使得浓缩室中HR浓度增大,所以HR溶液:c2<c1,故C正确;
D. 根据阳极:4OH-—4e-=O2↑+2H2O;阴极:4H++4e-=2H2↑,所以若两极共收集3mol气体,则理论上转移4mol电子,故D正确;
所以本题答案:B。
6.下表是一些烷烃的燃烧热,则下列表达正确的是( )
化合物
燃烧热/ kJ·mol-1
化合物
燃烧热/ kJ·mol-1
甲烷
891.0
正丁烷
2878.0
乙烷
1560.8
异丁烷
2869.6
丙烷
2221.5
异戊烷
3531.3
A. 正戊烷的燃烧热大于3531.3 kJ·mol-1
B. 相同质量的烷烃、碳的质量分数越大,燃烧放出的热量越多
C. 正丁烷转化为异丁烷的热化学方程式为:CH3CH2CH2CH3(g) CH3CH(CH3)CH3(g) △H =+8.4kJ·mol-1
D. 甲烷燃烧的热化学方程式为:CH4(g)+2O2(g) CO2(g) +2H2O(g) △H =-891.0kJ·mol-1
【答案】A
【解析】A、正戊烷和异丁烷互为同分异构体,由表格正丁烷、异丁烷的燃烧热比较可知,则互为同分异构体的化合物,支链多的燃烧热小,则正戊烷的燃烧热大于异戊烷,即正戊烷的燃烧热大于3531.3KJ/mol,故A正确;B.相同质量的烷烃,氢的质量分数越大,燃烧放热越多,故B错误;C.由表格的数据可知,异丁烷的燃烧热比正丁烷的燃烧热小,则异丁烷的能量低,正丁烷转化为异丁烷为放热反应,△H<0,故C错误;D、根据燃烧热的含义:完全燃烧1mol甲烷生成二氧化碳和液态水时会放出891.0KJ的热量,所以热化学方程式为CH4(g)+2O2(g)═CO2(g)+2H2O(l)△H=-891.0kJ/mol,故D错误;故选A。
7.某体积可变的密闭容器中盛有适量的A和B的混合气体,在一定条件下发生反应,A(g) +3 B(g)2 C(g)若维持温度和压强不变,达到平衡时,容器的体积为V L。其中C气体的体积占20%,下列推断正确的是( )
①原混合气体的体积为1.1V L
②原混合气体的体积为1.2V L
③反应达平衡时气体B消耗掉0.1V L
④反应达平衡时气体A消耗掉0.1V L
A. ②③ B. ②④ C. ①③ D. ①④
【答案】B
【解析】试题分析:平衡时生成C的体积为0.2VL,则:
A(g)+3 B(g)2 C(g) 体积减小△V
1 3 2 2
反应(L) 0.1V 0.3V 0.2V 0.2V
则原混合气体总体积="VL+0.2VL=1.2V" L,反应达平衡时气体A消耗掉0.1V L,气体B消耗掉0.3V L,故选B。
8.对于一定条件下进行的化学反应:2SO3(g) 2SO2(g)+O2(g),改变下列条件,可以提高反应物活化分子百分数的是( )
①增大压强②升高温度③加入催化剂④增大反应物浓度
A. ①② B. ②③
C. ①②③ D. ①②④
【答案】B
【解析】
【详解】①增大压强,只能改变单位体积内活化分子数;
②升高温度,可以使能量较低的分子变成活化分子,所以既能改变单位体积内活化分子数,也能改变活化分子百分数;
③加入催化剂,降低反应的活化能,可以使更多的反应物分子变成活化分子,所以既能改变单位体积内活化分子数,也能改变活化分子百分数;
④增大反应物浓度,只能改变单位体积内活化分子数,所以②③符合题意;
答案选B。
9.根据如图有关图象,说法正确的是( )
A. 由图Ⅰ知,反应在T1、T3处达到平衡,且该反应的△H<0
B. 由图Ⅱ知,反应在t6时刻,NH3体积分数最大
C. 由图Ⅱ知,t3时采取降低反应体系温度的措施
D. 图Ⅲ表示在10L容器、850℃时的反应,由图知,到4min时,反应放出51.6kJ的热量
【答案】D
【解析】
【分析】找出平衡点,根据勒夏特列原理进行分析;
【详解】A、根据图I,T2℃下反应物体积分数达到最小,生成物的体积分数达到最大,T2℃反应达到平衡,T1℃没有达到平衡,T2℃以后,X的体积分数增大,Z的体积分数减小,随着温度的升高,平衡向逆反应方向进行,正反应方向为放热反应,即△H<0,故A错误;
B、t2时刻正逆反应速率相等,平衡不移动,根据图像Ⅱ,t3后,反应向逆反应方向进行,NH3的量减少,即t1~t3时刻,NH3体积分数最大,故B错误;
C、根据图像Ⅱ,t3时,正逆反应速率都降低,改变的因素是降低温度,或减小压强,根据图像Ⅱ,t3时,反应向逆反应方向移动,如果降低温度,该反应为放热反应,降低温度,平衡向正反应方向移动,即v正>v逆,不符合图像,t3时刻采取的是减小压强,故C错误;
D、根据图Ⅲ,0到4min变化的物质的量为0.12mol·L-1×10L=1.2mol,即放出的热量为1.2mol×43kJ·mol-1=51.6kJ,故D正确;
答案选D。
10.下列实验装置符合实验目的的是( )
【答案】B
【解析】
【详解】A.电解精炼粗铜时,粗铜作阳极,精铜作阴极,电解质溶液为可溶性的硫酸铜溶液,故A错误;
B.根据电流方向知,碳棒作阳极,铁棒作阴极,阳极上氯离子失电子生成氯气,氯气能和碘离子反应生成碘单质,碘遇淀粉试液变蓝色,阴极上氢离子放电生成氢气,同时阴极附近生成氢氧根离子而使溶液呈碱性,无色酚酞试液遇碱变红色,所以该装置能检验氯化钠溶液的产物,故B正确;
C.电镀时,镀层铜作阳极,镀件铁作阴极,铁应该连接电源负极,电解质溶液为可溶性的铜盐,故C错误;
D.该装置要形成原电池,铁作负极、碳作正极,正极所在的电解质溶液为氯化铁溶液,负极所在溶液为氯化亚铁溶液,故D错误;
故答案为B。
11.科研工作者对甘油(丙三醇)和辛酸合成甘油二酯的酶法合成工艺进行了研究。发现其它条件相同时,不同脂肪酶(Ⅰ号、Ⅱ号)催化合成甘油二酯的效果如图所示,此实验中催化效果相对最佳的反应条件是( )
A. 12h,I号 B. 24h,I号 C. 12h,II号 D. 24h,II号
【答案】A
【解析】
【分析】结合图及表可知,12h,I号时合成甘油二酯转化率大,时间快;
【详解】结合图及表可知,在12h时,辛酸的转化率和甘油二酯的含量较高,同时,反应时间增加的话,转化率和甘油二酯的含量不会增加的太明显,所以选用12h更好;在12h时,脂肪酶Ⅰ号的转化率和甘油二酯的含量都比Ⅱ高,所以选用Ⅰ号,A项正确;
答案选A。
12.一定温度下,在某2 L恒容密闭容器中加入纳米级氧化亚铜并通入0.1 mol 水(g),发生如下反应:2H2O(g)2H2(g)+O2(g) ΔH=+484 kJ·mol-1。不同时间产生O2的物质的量见下表:
下列说法不正确的是( )
A. 前20 min内的平均反应速率v(H2O)=5×10-5mol·L-1·min-1
B. 达到平衡时,需要从外界吸收的能量为0.968 kJ
C. 增大水的浓度,可以改变待反应的限度
D. 使用纳米级的氧化亚铜,可以增大平衡时氧气的体积分数
【答案】D
【解析】
【详解】A. 前20 min内,生成0.0010mol氧气,则消耗0.0020mol水蒸气,水蒸气的浓度变化量为0.0020mol/2L=0.0010mol·L-1,所以v(H2O)=0.0010mol·L-1/20min=5×10-5mol·L-1·min-1,故A不选;
B. 达到平衡时,生成0.0020mol氧气,根据热化学方程式,生成1mol氧气,需要吸收484 kJ的热量,所以生成0.0020mol氧气,需要从外界吸收的能量为484 kJ ×0.0020mol=0.968 kJ,故B不选;
C. 增大水蒸气的浓度,可以使平衡右移,故C不选;
D.氧化亚铜是催化剂,只能加快反应速率,不能使平衡发生移动,所以不能改变平衡时氧气的体积分数,故D选。
故选D。
13.电—Fenton法是用于水体里有机污染物降解的高级氧化技术,其反应原理如图所示,其中电解产生的H2O2与Fe2+发生Fenton反应,Fe2++H2O2=Fe3++OH-+•OH,生成的烃基自由基(•OH)能氧化降解有机污染物。下列说法正确的是( )
A. 电解池左边电极的电势比右边电极的电势高
B. 电解池中只有O2和Fe3+发生还原反应
C. 消耗1 molO2,电解池右边电极产生4mol •OH
D. 电解池工作时,右边电极附近溶液的pH增大
【答案】C
【解析】
【详解】A. 电解池左边电极上Fe2+失电子产生Fe3+,作为阳极,电势比右边电极的电势低,选项A错误;
B. O2、Fe3+在阴极上得电子发生还原反应,H2O2与Fe2+反应,则H2O2发生得电子的还原反应,选项B错误;
C. 1 molO2转化为2 mol H2O2转移2 mole-,由Fe2++H2O2=Fe3++OH-+•OH可知,生成2mol •OH,阳极电极方程式为H2O-e-=•OH+H+,转移2 mole-,在阳极上生成2mol •OH,因此消耗1 molO2,电解池右边电极产生4mol •OH,选项C正确;
D. 电解池工作时,右边电极水失电子生成羟基和氢离子,其电极方程式为H2O-e-=•OH+H+,附近溶液的pH减小,选项D错误;
答案选C。
14.在如图所示的三个容积相同的容器①②③中进行如下反应:3A(g)+B(g) 2C(g) ΔH<0,若起始温度相同,分别向三个容器中通入3 mol A和1 mol B,则达到平衡时各容器中C物质的体积分数由大到小的顺序为( )
A. ③②① B. ③①② C. ①②③ D. ②①③
【答案】A
【解析】
【详解】3A(g)+B(g) 2C(g)是体积减小的、放热的可逆反应。①容器反应过程中,体积不变,温度升高,与容器②相比,相当于升温,不利于反应正向移动,C物质的体积分数②>①;③容器体积可变、压强不变,正反应体积减小,所以③中的压强始终高于②,有利于反应正向移动,C物质的体积分数③>②,达到平衡时各容器中C物质的体积分数由大到小的顺序为③②①,故选A。
15.在体积恒定的密闭容器中,一定量的二氧化硫与1.100mol氧气在催化剂作用下加热到600℃发生反应:2SO2+O22SO3。当气体的物质的量减少0.315mol时反应达到平衡,在相同温度下测得气体压强为反应前的82.5%。下列有关叙述正确的是( )
A. 三氧化硫生成的速率与二氧化硫消耗的速率相等时反应达到平衡
B. 降低温度,正反应速率减小,逆反应速率增大
C. 平衡混合气体通入过量氯化钡溶液中,得到沉淀的质量为161.980g
D. 达到平衡时,二氧化硫的转化率为90%
【答案】D
【解析】
【详解】A.SO3生成速率与SO2的消耗速率都是正反应速率,两者始终相等,不能作为判断化学平衡的依据,故A错误;
B.降低温度,正反应速率和逆反应速率都减小,故B错误;
C.设二氧化硫起始物质的量是xmol,平衡时转化的二氧化硫为ymol,则:
2SO2(g)+O2(g)2SO3(g)
起始量(mol): x 1.100 0
转化量(mol): y 0.5y y
平衡量(mol): x-y 1.100-0.5y y
气体总物质的量减少0.315mol时反应达到平衡,则0.5y=0.315,故y=0.63,在相同的温度下测得气体压强为反应前的82.5%,则×100%=82.5%,故x=0.7。将混合气体通入过量的氯化钡溶液中,三氧化硫和氯化钡溶液反应生成硫酸钡沉淀,二氧化硫与氧气、水反应生成硫酸,硫酸与氯化钡反应生成硫酸钡沉淀,0.7mol二氧化硫完全转化消耗0.35mol氧气,氧气有剩余,根据硫元素守恒,硫酸钡的物质的量是0.7mol,故其质量为0.7mol×233g/mol=163.1g,故C错误;
D.达到平衡时,SO2的转化率=×100%=90%,故D正确。
故选D。
16.将CH4设计成燃料电池,其利用率更高,装置示意如图(A、B为多孔性碳棒)持续通入甲烷,在标准状况下,消耗甲烷体积VL。则下列说法错误的是( )
A. 通入CH4的一端为原电池的负极,通入空气的一端为原电池的正极
B. 0<V≤22.4 L时,电池总反应的化学方程式为CH4+2O2+2KOH=K2CO3+3H2O
C. 22.4 L<V≤44.8 L时,负极电极反应为CH4-8e-++3H2O=
D. V=33.6 L时,溶液中只存在阴离子
【答案】D
【解析】
【分析】因为n(KOH)=2mol/L×1L=2mol,故随着CH4通入的量逐渐增加,可能先后发生反应①CH4+2O2=CO2+2H2O、②CO2+2KOH=K2CO3+H2O、③K2CO3+CO2+H2O=2KHCO3;再根据甲烷的量计算生成的二氧化碳的量,结合反应方程式判断反应产物及发生的反应。
【详解】A. 燃料电池中,通入CH4的一端发生氧化反应,为原电池的负极;通入空气(O2)的一端发生还原反应,为原电池的正极,不选A项;
B. 当0<V≤22.4L时,0<n(CH4)≤1mol,则0<n(CO2)≤1mol,又因为电解质溶液中n(KOH)=2mol,故KOH过量,所以电池总反应式为CH4+2O2+2KOH=K2CO3+3H2O,不选B项;
C. 当22.4 L<V≤44.8L,1mol<n(CH4)≤2mol,则1mol<n(CO2)≤2mol,发生反应①②③,得到K2CO3和KHCO3溶液,则负极反应式为,不选C项;
D. 当V=33.6L时,n(CH4)=1.5mol,n(CO2)=1.5mol,则电池总反应式为3CH4+6O2+4KOH=K2CO3+2KHCO3+7H2O,则得到0.5molK2CO3和1molKHCO3的溶液,故溶液中的阴离子有和,选择D项。
答案选D。
第II卷(非选择题,共52分)
二.实验题,本大题共2小题,共20分。
17.通过测定反应过程中所放出的热量可计算中和热。50mL 0.50mol/L盐酸与50mL 0.55mol/LNaOH溶液在图示的装置中进行中和反应.回答下列问题:
(1)从实验装置上看,图中尚缺少的一种玻璃仪器是___________.
(2)大烧杯上如果不盖硬纸板,求得的中和热数值__________(填“偏大”,“偏小”或“无影响”).
(3)实验中改用60mL 0.50mol/L盐酸跟50mL 0.55mol/LNaOH溶液进行反应,与上述实验相比,所求中和热________(填“相等”“不相等”),简述理由:______________________.
(4)若两溶液的密度都是1g/mL,中和后所得溶液的比热容c=4.18J/(g·℃),三次平行操作测得终止温度与起始温度差(t2﹣t1)分别为:①3.2℃ ②2.2℃ ③3.0℃,写出表示盐酸与NaOH溶液反应的中和热的热化学方程式________________________.(小数点后保留一位小数)
【答案】(1). 环形玻璃搅拌棒 (2). 偏小 (3). 相等 (4). 因为中和热是指酸跟碱发生中和反应生成1 mol H2O所放出的能量,与酸碱的用量无关 (5). HCl(aq)+NaOH(aq)=NaCl(aq)+H2O(l)△H=﹣51.8 kJ/mol
【解析】
【详解】(1)从实验装置上看,图中尚缺少的一种玻璃仪器是用于搅拌的环形玻璃搅拌棒;
(2)大烧杯上如果不盖硬纸板,会导致热量散失,测得的温差会比真实值小,求得的中和热数值偏小;
(3)中和热是指酸跟碱发生中和反应生成1molH2O(l)所放出的能量,与酸碱的用量无关,所以求得的中和热数值相等;
(4))三次平行操作测得终止温度与起始温度差(t2-t1)分别为:①3.2℃ ②2.2℃ ③3.0℃,由于第②组数据与其他两组相差较大,将第②组舍去,温度差的平均值为3.1℃,50mL 0.50mol/L盐酸与50mL 0.55mol/LNaOH溶液进行中和反应生成水的物质的量为0.05L×0.5mol/L=0.025mol,溶液的质量为100ml×1g/ml=100g,则生成0.025mol水放出的热量为Q=m•c•△T=100g×4.18J/(g•℃)×3.1℃=1259.8J,即1.2598kJ,所以实验测得的中和热,该反应的热化学方程式:HCl(aq)+NaOH(aq)=NaCl(aq)+H2O(l)△H=-51.8 kJ/mol。
18.某组甲乙同学进行稀硫酸与锌制取氢气的实验,请回答下列问题:
(1)甲同学发现加入少量硫酸铜溶液可加快氢气的生成速率。为了进一步研究硫酸铜的量对氢气生成速率的影响,设计了如下一系列实验。将表中所给的混合溶液分别加入到6个盛有过量Zn粒的反应瓶中,收集产生的气体,记录获得相同体积的气体所需时间。
实验
混合溶液
A
B
C
D
E
F
4 mol·L-1 H2SO4/mL
30
V1
V2
V3
V4
V5
饱和CuSO4溶液/mL
0
0.5
2.5
5
V6
20
H2O/mL
V7
V8
V9
V10
10
0
①请完成此实验设计,其中:V1=___,V6=___,V9=___;
②反应一段时间后,实验A中的金属呈___色,实验E中的金属呈___色;
③该同学最后得出的结论为:当加入少量CuSO4溶液时,生成氢气的速率会大大提高。但当加入的CuSO4溶液超过一定量时,生成氢气的速率反而会下降。请分析氢气生成速率下降的主要原因___________________________。
(2)乙同学为了探究锌与稀硫酸反应过程中的速率及能量的变化,进行以下实验,分析影响反应速率的因素。
实验时,从断开K开始,每间隔1分钟,交替断开或闭合K,并连续计数每1分钟内从a管流出的水滴数,得到的水滴数如下表所示:
1分钟水滴数(断开K)
34
59
86
117
…
102
1分钟水滴数(闭合K)
58
81
112
139
…
78
分析反应过程中的水滴数,请回答:
① 由水滴数58>34、81>59,说明在反应初期,闭合K时比断开K时的反应速率快,主要原因是__________________________________________________________。
② 由水滴数102>78,说明在反应后期,断开K时的反应速率快于闭合K时的反应速率,主要原因是____________________________________。
【答案】(1). 30 (2). 10 (3). 17.5 (4). 灰黑 (5). 暗红 (6). 当加入一定量的CuSO4后,生成的单质Cu会沉积在Zn的表面,减少了Zn与溶液的接触面积 (7). 形成原电池反应速度快 (8). 断开K时,溶液中的c(H+)大于闭合K时溶液中的c(H+),c(H+)的影响是主要因素
【解析】
【分析】(1)①为保证实验有对比性,只能改变一个变量分析,CuSO4溶液体积逐渐增多,故H2SO4的量应相等均为30mL,水的量减小,但每组实验中CuSO4与水的体积之和应相等;
②实验A中锌粒与稀硫酸反应,因锌粒不纯,表面会有杂质的颜色;而实验E中生成的单质Cu会沉积在Zn的表面;
③锌粒与硫酸铜反应生成的铜会附在锌粒表面;
(2)①原电池可加快化学反应速率;
②根据氢离子浓度大小与速率的关系分析;
【详解】(1)①要对比试验效果,那么除了反应的物质的量不一样以外,要保证其它条件相同,而且是探究硫酸铜量的影响,那么每组硫酸的量要保持相同,六组反应的总体积也应该相同,故A组中硫酸为30mL,那么其它组硫酸量也都为30mL;而硫酸铜溶液和水的总量应相同,F组中硫酸铜20mL,水为0,那么总量为20mL,所以V6=10mL,V9=17.5mL,V1=30mL,故答案为:30;10;17.5;
②不纯的锌粒中含有Pb、Bi、Sn等杂质,实验A中锌粒与稀硫酸反应后, 这些不活泼的金属杂质游离出来,以颗粒状沉积在锌粒表面呈灰黑色;而实验E中过量的锌粒会与硫酸铜反应生成铜,形成原电池,加快化学反应速率,因此该实验中暗红色的铜会附着在锌粒表面,故答案为:灰黑;暗红;
③因为锌会先与硫酸铜反应,直至硫酸铜反应完才与硫酸反应生成氢气,硫酸铜量较多时,反应时间较长,而且生成的铜会附着在锌片上,会阻碍锌片与硫酸继续反应,氢气生成速率下降,故答案为:当加入一定量的CuSO4后,生成的单质Cu会沉积在Zn的表面,减少了Zn与溶液的接触面积;
(2)①因在反应初期,形成了原电池,所有闭合K时比断开K时的反应速率快,故答案为:形成原电池反应速度快;
②由于反应前期形成原电池反应速率快,氢离子消耗的多,则在后期,闭合K时溶液中氢离子浓度小,氢离子浓度越小反应速率越小,断开K时,溶液中的c(H+)大于闭合K时溶液中的c(H+),所以在反应后期,断开K时的反应速率快于闭合K时的反应速率;
故答案为:断开K时,溶液中的c(H+)大于闭合K时溶液中的c(H+),c(H+)的影响是主要因素;
三.填空题,本大题共2小题,共32分。
19.环戊二烯()是重要的有机化工原料,广泛用于农药、橡胶、塑料等生产。回答下列问题:
(1)已知:(g)= (g)+H2(g) ΔH1=100.3 kJ·mol −1 ①
H2(g)+ I2(g)=2HI(g) ΔH2=﹣11.0 kJ·mol −1 ②
对于反应:(g)+ I2(g)=(g)+2HI(g) ③ ΔH3=___________kJ·mol −1。
(2)某温度下,等物质的量的碘和环戊烯()在刚性容器内发生反应③,起始总压为105Pa,平衡时总压增加了20%,环戊烯的转化率为_________,该反应的平衡常数Kp=_________Pa。达到平衡后,欲增加环戊烯的平衡转化率,可采取的措施有__________(填标号)。
A.通入惰性气体 B.提高温度
C.增加环戊烯浓度 D.增加碘浓度
(3)环戊二烯容易发生聚合生成二聚体,该反应为可逆反应。不同温度下,溶液中环戊二烯浓度与反应时间的关系如图所示,下列说法正确的是__________(填标号)。
A.T1>T2
B.a点的反应速率小于c点的反应速率
C.a点的正反应速率大于b点的逆反应速率
D.b点时二聚体的浓度为0.45 mol·L−1
(4)环戊二烯可用于制备二茂铁(Fe(C5H5)2结构简式为),后者广泛应用于航天、化工等领域中。二茂铁电化学制备原理如下图所示,其中电解液为溶解有溴化钠(电解质)和环戊二烯的DMF溶液(DMF为惰性有机溶剂)。
该电解池的阳极为____________,总反应为__________________。电解制备需要在无水条件下进行,原因为_________________________。
【答案】(1). 89.3 (2). 40% (3). 3.56×104 (4). BD (5). CD (6). Fe电极 (7). Fe+2+H2↑(Fe+2C5H6Fe(C5H5)2+H2↑) (8). 水会阻碍中间物Na的生成;水会电解生成OH−,进一步与Fe2+反应生成Fe(OH)2
【解析】
【分析】(1)利用盖斯定律解题;
(2)利用差量法计算转化率;三行式法计算平衡常数;根据平衡移动原理解释;
(3)通过外界因素对速率的影响和平衡状态的形成分析A、B、C选项,D选项观察图象计算;
(4)根据阳极:升失氧;阴极:降得还进行分析确定阴阳极;根据题干信息中Na元素的变化确定环戊二烯得电子数和还原产物,进而写出电极反应式;注意Na与水会反应,Fe2+在碱性条件下生成沉淀。
【详解】(1)根据盖斯定律①-②,可得反应③的ΔH=89.3kJ/mol;
答案:89.3;
(2)假设反应前碘单质与环戊烯均为nmol,平衡时环戊烯反应了xmol,根据题意可知;
(g)+I2(g)= (g)+2HI(g) 增加的物质的量
1mol 1mol 1mol 2mol 1mol
xmol 2n×20%
得x=0.4nmol,转化率为0.4n/n×100%=40%;
(g) + I2(g)= (g)+ 2HI(g)
P(初) 0.5×105 0.5×105 0 0
ΔP 0.5×105×40% 0.5×105×40% 0.5×105×40% 1×105×40%
P(平) 0.3×105 0.3×105 0.2×105 0.4×105
Kp==3.56×104;
A.T、V一定,通入惰性气体,由于对反应物和生成物浓度无影响,速率不变,平衡不移动,故A错误;
B.升高温度,平衡向吸热方向移动,环戊烯转化率升高,故B正确;
C.增加环戊烯的浓度平衡正向移动,但环戊烯转化率降低,故C错误;
D,增加I2的浓度,平衡正向移动,环戊烯转化率升高,故D正确;
答案:40%;3.56×104;BD;
(3)A.温度越高化学反应速率越快,单位时间内反应物浓度减少越多,则T1
B.温度越高化学反应速率越快,因此a点反应速率大于c点反应速率,故B错误;
C. a点、b点反应一直在正向进行,故v(正)>v(逆),a点反应物浓度大于b点,故a点正反应速率大于b点,故C正确;
D.b点时环戊二烯浓度由1.5mol/L减小到0.6mol/L,减少了0.9mol/L,因此生成二聚体0.45mol/L,故D正确;
答案:CD;
(4)根据阳极升失氧可知Fe为阳极;根据题干信息Fe-2e-=Fe2+,电解液中钠离子起到催化剂的作用使得环戊二烯得电子生成氢气,同时与亚铁离子结合生成二茂铁,故电极反应式为Fe+2=+H2↑;电解必须在无水条件下进行,因为中间产物Na会与水反应生成氢氧化钠和氢气,亚铁离子会和氢氧根离子结合生成沉淀;
答案:Fe电极;Fe+2=+H2↑(Fe+2C5H6=Fe(C2H5)2+ H2↑);水会阻碍中间物Na的生成;水会电解生成OH-,进一步与Fe2+反应生成Fe(OH)2。
20.钠硫电池作为一种新型储能电池,其应用逐渐得到重视和发展。
(1)钠硫电池以熔融金属钠、熔融硫和多硫化钠(Na2SX)分别作为两个电极的反应物,固体Al2O3陶瓷(可传导Na+)为电解质,其反应原理如下图所示:
①根据上右表数据,请你判断该电池工作的适宜应控制在_________(填字母)范围内。
物质
Na
S
Al2O3
熔点/℃
97.8
115
2050
沸点/℃
892
444.6
2980
a.100℃以下 b.100~300℃ c.300~350℃ d.350~2050℃
②放电时,电极A为_________极,电极B发生_________反应(填“氧化或还原”)
③充电时,总反应为Na2SX=2Na+xS(3<x<5),则阳极的电极反应式为:________________。
(2)若把钠硫电池作为电源,电解槽内装有KI及淀粉溶液如图所示,槽内的中间用阴离子交换膜隔开。通电一段时间后,发现左侧溶液变蓝色,一段时间后,蓝色逐渐变浅。则右侧发生的电极方程式:___________;试分析左侧溶液蓝色逐渐变浅的可能原因是:___________。
(3)若把钠硫电池作为电源,按如图所示装置进行实验电解乙池和丙池:
当钠硫电池中消耗0.05xmol的S时,理论上乙池中B极的质量增加__________g;此时丙装置中___________(填“C”或“D”)电极析出7.20g金属,则丙装置中的某盐溶液可能是_______(填序号)。
a.MgSO4溶液 b.CuSO4溶液 c.NaCl溶液 d.AgNO3溶液
【答案】(1). C (2). 负 (3). 还原 (4). SX2--2e-=xS (5). 2H2O+2e—=H2↑+2OH—(2H++2e—=H2↑) (6). 右侧溶液中生成的OH—通过阴离子交换膜进入左侧溶液,并与左侧溶液中I2反应等 (7). 10.8 (8). D (9). bd
【解析】
【分析】(1)原电池工作时,控制的温度应为满足Na、S为熔融状态,Na被氧化,应为原电池负极,阳离子向正极移动,充电时,阳极反应为原电池正极反应的逆反应,应生成S,以此解答;
(2)左侧溶液变蓝色,生成I2,左侧电极为阳极,电极反应为:2I--2e-=I2,右侧电极为阴极,电极反应式为:2H2O+2e-=H2↑+2OH-,右侧放出氢气,右侧I-、OH-通过阴离子交换膜向左侧移动,发生反应3I2+6OH-=IO3-+5I-+3H2O,一段时间后,蓝色变浅,保证两边溶液呈电中性,左侧的IO3-通过阴离子交换膜向右侧移动,由此分析解答。
(3)根据串联电路中电子转移数相等,结合电化学的工作原理分析作答。
【详解】(1)①原电池工作时,控制的温度应为满足Na、S为熔融状态,则温度应高于115℃而低于444.6℃,只有C符合,故答案为:C;
②放电时,Na被氧化,则A应为原电池负极,B为正极发生还原反应,故答案为:负;还原;
③充电时,是电解池反应,阳极反应为:SX2--2e-=xS;
(2)根据以上分析,左侧溶液变蓝色,生成I2,左侧电极为阳极,电极反应为:2I−−2e−=I2,右侧电极为阴极,电极反应式为:2H2O+2e—=H2↑+2OH-(2H++2e-=H2↑),右侧I−、OH−通过阴离子交换膜向左侧移动,发生反应3I2+6OH−=IO3−+5I−+3H2O,一段时间后,蓝色变浅,故答案为:2H2O+2e—=H2↑+2OH-(2H++2e-=H2↑);右侧溶液中生成的OH-通过阴离子交换膜进入左侧溶液,并与左侧溶液中I2反应等;
(3)根据反应式SX2--2e-=xS可知,当钠硫电池中消耗0.05xmol的S时,电子转移数为0.1mol,则乙池是电解池,B极上银离子得电子发生还原反应而析出银,根据转移电子数相等,乙池中B极的质量增加0.1mol108g/mol=10.8g;丙池是电解池,阴极上金属离子放电析出金属单质,D连接电源的负极,则D是阴极,电极质量会增加;根据转移电子相等知,当析出金属时,则该金属元素在氢元素之后,ac项错误,bd正确,故答案为:bd。
福建省南安第一中学2019-2020学年高二上学期第一次阶段考试试题
本试卷考试内容为:化学反应原理。分第I卷(选择题)和第II卷,共6页,满分100分,考试时间90分钟。
注意事项:
1.答题前,考生务必先将自己的姓名、准考证号填写在答题纸上。
2.考生作答时,请将答案答在答题纸上,在本试卷上答题无效。按照题号在各题的答题区域内作答,超出答题区域书写的答案无效。
3.答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚(英语科选择题答案使用2B铅笔填涂,如需改动,用橡皮擦干净后,再选涂其它答案标号)。
4.保持答题纸纸面清洁,不破损。考试结束后,将本试卷自行保存,答题纸交回。
相对原子质量:O:16 Na: 23 Mg:24 S:32 Cu:64 Ag:108 Ba:137
第I卷(选择题 共48分)
一.选择题:本大题共16小题,每小题3分,共48分。在每小题给出的四个选项中,只有1项符合题目要求。
1.如图是中国在南极建设的第四个科学考察站——泰山站。为了延长科学考察站基础设施使用寿命,钢铁设备表面镶嵌一些金属块(M)。下列说法正确的是( )
A. 金属块M可能是铜,发生氧化反应
B. 这种保护方法叫牺牲阳极阴极保护法
C. 科考考察站里的设备在潮湿空气中主要发生化学腐蚀
D. 若采用外加电流的阴极保护法,设备与电源正极相连
【答案】B
【解析】
【详解】A.如果金属块M是铜,铜与钢铁设备构成原电池时,铁为负极,腐蚀速率加快,故A错误;
B.为了延长科学考察站基础设施使用寿命,钢铁设备表面镶嵌一些金属块(M),M应该充当原电池负极,这种保护方法叫牺牲阳极的阴极保护法,故B正确;
C.科考考察站里的设备在潮湿空气中主要发生电化学腐蚀,故C错误;
D.若采用外加电流的阴极保护法,钢铁设备应该与电源负极相连,充当电解池的阴极,被保护,故D错误;
故选B。
2.成语是中国传统文化的瑰宝。铜墙铁壁、铜心铁胆、金戈铁马、百炼成钢等成语向人传递正能量。工业上,冶炼铁的有关热化学方程式如下:①C(s)+O2(g)=CO2(g) △H1=akJ·mol-1;②CO2(g)+C(s)=2CO(g) △H2=bkJ·mol-1;③Fe2O3(s)+3CO(g)=2Fe(s)+3CO2(g) △H3=ckJ·mol-1;④2Fe2O3(s)+3C(s)=4Fe(s)+3CO2(g ) △H4=dkJ·mol-1(上述热化学方程式中,a,b,c,d均不等于0)下列说法正确的是( )
A. b B. CO(g)+ 1/2O2(g)= CO2(g) △H
D. C(s)+ 1/2O2(g)=CO (g) △H=(a+b)/2kJ·mol-1
【答案】D
【解析】
【详解】A,反应①属于放热反应,a<0,反应②属于吸热反应,b>0,所以,b>a,A项错误;
B, 根据①式可知, 完全燃烧生成时燃烧热是,燃烧生成时放出一部分热量,燃烧生成也放热,说明燃烧放出的热量一定大于燃烧放出的热量,由于放热反应的反应热为负值,因此,B项错误;
C, 根据盖斯定律易知,②3+③2=④,所以,d=3b+2c,C项错误;
D, ①+②得,则该反应的,D项正确;
答案选D。
3.如图所示,把盛有几小块镁片的试管放入盛有25℃的饱和石灰水的烧杯中,再用滴管向试管中滴入2 mL的稀盐酸。下列对烧杯中的实验现象的描述及原因说明正确的是( )
A. 烧杯中出现白色浑浊,原因是试管中的反应放出热量使烧杯中饱和石灰水温度升高,溶质析出
B. 烧杯中出现白色浑浊,原因是试管中的反应吸收热量使烧杯中饱和石灰水温度降低,溶质析出
C. 烧杯中没有任何现象,原因是试管中的反应对烧杯中饱和石灰水不会产生任何影响
D. 烧杯中没有任何现象,原因是试管中的反应既不放出热量,也不吸收热量
【答案】A
【解析】
【分析】镁与盐酸反应生成氯化镁和氢气,反应放热,温度升高。
【详解】A. 氢氧化钙的溶解度随温度升高而降低,试管中的反应放出热量使烧杯中饱和石灰水温度升高,氢氧化钙析出,故A正确;
B. 镁与盐酸反应生成氯化镁和氢气,反应放热,温度升高,故B错误;
C. 氢氧化钙的溶解度随温度升高而降低,试管中的反应放出热量使烧杯中饱和石灰水温度升高,氢氧化钙析出,溶液变浑浊,故C错误;
D. 镁与盐酸反应生成氯化镁和氢气,反应放热,试管中的反应放出热量使烧杯中饱和石灰水温度升高,氢氧化钙析出,溶液变浑浊,故D错误。答案选A。
4.将5 mL 0.005 mol/L FeCl3溶液和5 mL 0.015 mol/L KSCN溶液混合,达到平衡后呈红色。再将混合液分为5份,分别进行如下实验:
下列说法不正确的是( )
A. 对比实验①和②,为了证明增加反应物浓度,平衡发生正向移动
B. 对比实验①和③,为了证明增加反应物浓度,平衡发生逆向移动
C. 对比实验①和④,为了证明增加反应物浓度,平衡发生正向移动
D. 对比实验①和⑤,为了证明减少反应物浓度,平衡发生逆向移动
【答案】B
【解析】
【分析】实验①为对照组,控制反应溶液的总体积相同,在其它条件不变时,只改变影响平衡的一个条件,判断平衡的移动方向,则可得出该条件对平衡的影响,据此分析可得结论。
【详解】A.实验②与①对比,只改变了Fe3+浓度,故A说法正确;
B.FeCl3溶液和KSCN溶液反应的本质是Fe3++3SCN-Fe(SCN)3,改变钾离子或氯离子的浓度对平衡没有影响,故B说法错误;
C.实验④与①对比,只改变的反应物SCN-的浓度,故C说法正确;
D.在原平衡体系中加入NaOH溶液,Fe3+与之反应生成Fe(OH)3沉淀,溶液中Fe3+的浓度减小,故D说法正确;
答案选B。
5.利用光伏电池提供电能处理废水中污染物(有机酸阴离子用R-表示),并回收有机酸HR,装置如图所示。下列说法错误的是( )
A. 在光伏电池中a极为正极
B. 石墨(2)极附近溶液的pH降低
C. HR溶液:c2<c1
D. 若两极共收集3mol气体,则理论上转移4mol电子
【答案】B
【解析】
【详解】A.根据电子移动的方向,可知在光伏电池中a极为正极,b为负极,故A正确;
B. 石墨(2)为电解池的阴极,H+得电子变成氢气,使c(H+)降低,pH升高,故B错误;
C. 石墨(1)为电解池的阳极,OH-失电子变成氧气,使得c(H+)升高,透过阳膜进入浓缩室;石墨(2)为电解池的阴极,H+得电子变成氢气,R-透过阴膜进入浓缩室,使得浓缩室中HR浓度增大,所以HR溶液:c2<c1,故C正确;
D. 根据阳极:4OH-—4e-=O2↑+2H2O;阴极:4H++4e-=2H2↑,所以若两极共收集3mol气体,则理论上转移4mol电子,故D正确;
所以本题答案:B。
6.下表是一些烷烃的燃烧热,则下列表达正确的是( )
化合物
燃烧热/ kJ·mol-1
化合物
燃烧热/ kJ·mol-1
甲烷
891.0
正丁烷
2878.0
乙烷
1560.8
异丁烷
2869.6
丙烷
2221.5
异戊烷
3531.3
A. 正戊烷的燃烧热大于3531.3 kJ·mol-1
B. 相同质量的烷烃、碳的质量分数越大,燃烧放出的热量越多
C. 正丁烷转化为异丁烷的热化学方程式为:CH3CH2CH2CH3(g) CH3CH(CH3)CH3(g) △H =+8.4kJ·mol-1
D. 甲烷燃烧的热化学方程式为:CH4(g)+2O2(g) CO2(g) +2H2O(g) △H =-891.0kJ·mol-1
【答案】A
【解析】A、正戊烷和异丁烷互为同分异构体,由表格正丁烷、异丁烷的燃烧热比较可知,则互为同分异构体的化合物,支链多的燃烧热小,则正戊烷的燃烧热大于异戊烷,即正戊烷的燃烧热大于3531.3KJ/mol,故A正确;B.相同质量的烷烃,氢的质量分数越大,燃烧放热越多,故B错误;C.由表格的数据可知,异丁烷的燃烧热比正丁烷的燃烧热小,则异丁烷的能量低,正丁烷转化为异丁烷为放热反应,△H<0,故C错误;D、根据燃烧热的含义:完全燃烧1mol甲烷生成二氧化碳和液态水时会放出891.0KJ的热量,所以热化学方程式为CH4(g)+2O2(g)═CO2(g)+2H2O(l)△H=-891.0kJ/mol,故D错误;故选A。
7.某体积可变的密闭容器中盛有适量的A和B的混合气体,在一定条件下发生反应,A(g) +3 B(g)2 C(g)若维持温度和压强不变,达到平衡时,容器的体积为V L。其中C气体的体积占20%,下列推断正确的是( )
①原混合气体的体积为1.1V L
②原混合气体的体积为1.2V L
③反应达平衡时气体B消耗掉0.1V L
④反应达平衡时气体A消耗掉0.1V L
A. ②③ B. ②④ C. ①③ D. ①④
【答案】B
【解析】试题分析:平衡时生成C的体积为0.2VL,则:
A(g)+3 B(g)2 C(g) 体积减小△V
1 3 2 2
反应(L) 0.1V 0.3V 0.2V 0.2V
则原混合气体总体积="VL+0.2VL=1.2V" L,反应达平衡时气体A消耗掉0.1V L,气体B消耗掉0.3V L,故选B。
8.对于一定条件下进行的化学反应:2SO3(g) 2SO2(g)+O2(g),改变下列条件,可以提高反应物活化分子百分数的是( )
①增大压强②升高温度③加入催化剂④增大反应物浓度
A. ①② B. ②③
C. ①②③ D. ①②④
【答案】B
【解析】
【详解】①增大压强,只能改变单位体积内活化分子数;
②升高温度,可以使能量较低的分子变成活化分子,所以既能改变单位体积内活化分子数,也能改变活化分子百分数;
③加入催化剂,降低反应的活化能,可以使更多的反应物分子变成活化分子,所以既能改变单位体积内活化分子数,也能改变活化分子百分数;
④增大反应物浓度,只能改变单位体积内活化分子数,所以②③符合题意;
答案选B。
9.根据如图有关图象,说法正确的是( )
A. 由图Ⅰ知,反应在T1、T3处达到平衡,且该反应的△H<0
B. 由图Ⅱ知,反应在t6时刻,NH3体积分数最大
C. 由图Ⅱ知,t3时采取降低反应体系温度的措施
D. 图Ⅲ表示在10L容器、850℃时的反应,由图知,到4min时,反应放出51.6kJ的热量
【答案】D
【解析】
【分析】找出平衡点,根据勒夏特列原理进行分析;
【详解】A、根据图I,T2℃下反应物体积分数达到最小,生成物的体积分数达到最大,T2℃反应达到平衡,T1℃没有达到平衡,T2℃以后,X的体积分数增大,Z的体积分数减小,随着温度的升高,平衡向逆反应方向进行,正反应方向为放热反应,即△H<0,故A错误;
B、t2时刻正逆反应速率相等,平衡不移动,根据图像Ⅱ,t3后,反应向逆反应方向进行,NH3的量减少,即t1~t3时刻,NH3体积分数最大,故B错误;
C、根据图像Ⅱ,t3时,正逆反应速率都降低,改变的因素是降低温度,或减小压强,根据图像Ⅱ,t3时,反应向逆反应方向移动,如果降低温度,该反应为放热反应,降低温度,平衡向正反应方向移动,即v正>v逆,不符合图像,t3时刻采取的是减小压强,故C错误;
D、根据图Ⅲ,0到4min变化的物质的量为0.12mol·L-1×10L=1.2mol,即放出的热量为1.2mol×43kJ·mol-1=51.6kJ,故D正确;
答案选D。
10.下列实验装置符合实验目的的是( )
【答案】B
【解析】
【详解】A.电解精炼粗铜时,粗铜作阳极,精铜作阴极,电解质溶液为可溶性的硫酸铜溶液,故A错误;
B.根据电流方向知,碳棒作阳极,铁棒作阴极,阳极上氯离子失电子生成氯气,氯气能和碘离子反应生成碘单质,碘遇淀粉试液变蓝色,阴极上氢离子放电生成氢气,同时阴极附近生成氢氧根离子而使溶液呈碱性,无色酚酞试液遇碱变红色,所以该装置能检验氯化钠溶液的产物,故B正确;
C.电镀时,镀层铜作阳极,镀件铁作阴极,铁应该连接电源负极,电解质溶液为可溶性的铜盐,故C错误;
D.该装置要形成原电池,铁作负极、碳作正极,正极所在的电解质溶液为氯化铁溶液,负极所在溶液为氯化亚铁溶液,故D错误;
故答案为B。
11.科研工作者对甘油(丙三醇)和辛酸合成甘油二酯的酶法合成工艺进行了研究。发现其它条件相同时,不同脂肪酶(Ⅰ号、Ⅱ号)催化合成甘油二酯的效果如图所示,此实验中催化效果相对最佳的反应条件是( )
A. 12h,I号 B. 24h,I号 C. 12h,II号 D. 24h,II号
【答案】A
【解析】
【分析】结合图及表可知,12h,I号时合成甘油二酯转化率大,时间快;
【详解】结合图及表可知,在12h时,辛酸的转化率和甘油二酯的含量较高,同时,反应时间增加的话,转化率和甘油二酯的含量不会增加的太明显,所以选用12h更好;在12h时,脂肪酶Ⅰ号的转化率和甘油二酯的含量都比Ⅱ高,所以选用Ⅰ号,A项正确;
答案选A。
12.一定温度下,在某2 L恒容密闭容器中加入纳米级氧化亚铜并通入0.1 mol 水(g),发生如下反应:2H2O(g)2H2(g)+O2(g) ΔH=+484 kJ·mol-1。不同时间产生O2的物质的量见下表:
下列说法不正确的是( )
A. 前20 min内的平均反应速率v(H2O)=5×10-5mol·L-1·min-1
B. 达到平衡时,需要从外界吸收的能量为0.968 kJ
C. 增大水的浓度,可以改变待反应的限度
D. 使用纳米级的氧化亚铜,可以增大平衡时氧气的体积分数
【答案】D
【解析】
【详解】A. 前20 min内,生成0.0010mol氧气,则消耗0.0020mol水蒸气,水蒸气的浓度变化量为0.0020mol/2L=0.0010mol·L-1,所以v(H2O)=0.0010mol·L-1/20min=5×10-5mol·L-1·min-1,故A不选;
B. 达到平衡时,生成0.0020mol氧气,根据热化学方程式,生成1mol氧气,需要吸收484 kJ的热量,所以生成0.0020mol氧气,需要从外界吸收的能量为484 kJ ×0.0020mol=0.968 kJ,故B不选;
C. 增大水蒸气的浓度,可以使平衡右移,故C不选;
D.氧化亚铜是催化剂,只能加快反应速率,不能使平衡发生移动,所以不能改变平衡时氧气的体积分数,故D选。
故选D。
13.电—Fenton法是用于水体里有机污染物降解的高级氧化技术,其反应原理如图所示,其中电解产生的H2O2与Fe2+发生Fenton反应,Fe2++H2O2=Fe3++OH-+•OH,生成的烃基自由基(•OH)能氧化降解有机污染物。下列说法正确的是( )
A. 电解池左边电极的电势比右边电极的电势高
B. 电解池中只有O2和Fe3+发生还原反应
C. 消耗1 molO2,电解池右边电极产生4mol •OH
D. 电解池工作时,右边电极附近溶液的pH增大
【答案】C
【解析】
【详解】A. 电解池左边电极上Fe2+失电子产生Fe3+,作为阳极,电势比右边电极的电势低,选项A错误;
B. O2、Fe3+在阴极上得电子发生还原反应,H2O2与Fe2+反应,则H2O2发生得电子的还原反应,选项B错误;
C. 1 molO2转化为2 mol H2O2转移2 mole-,由Fe2++H2O2=Fe3++OH-+•OH可知,生成2mol •OH,阳极电极方程式为H2O-e-=•OH+H+,转移2 mole-,在阳极上生成2mol •OH,因此消耗1 molO2,电解池右边电极产生4mol •OH,选项C正确;
D. 电解池工作时,右边电极水失电子生成羟基和氢离子,其电极方程式为H2O-e-=•OH+H+,附近溶液的pH减小,选项D错误;
答案选C。
14.在如图所示的三个容积相同的容器①②③中进行如下反应:3A(g)+B(g) 2C(g) ΔH<0,若起始温度相同,分别向三个容器中通入3 mol A和1 mol B,则达到平衡时各容器中C物质的体积分数由大到小的顺序为( )
A. ③②① B. ③①② C. ①②③ D. ②①③
【答案】A
【解析】
【详解】3A(g)+B(g) 2C(g)是体积减小的、放热的可逆反应。①容器反应过程中,体积不变,温度升高,与容器②相比,相当于升温,不利于反应正向移动,C物质的体积分数②>①;③容器体积可变、压强不变,正反应体积减小,所以③中的压强始终高于②,有利于反应正向移动,C物质的体积分数③>②,达到平衡时各容器中C物质的体积分数由大到小的顺序为③②①,故选A。
15.在体积恒定的密闭容器中,一定量的二氧化硫与1.100mol氧气在催化剂作用下加热到600℃发生反应:2SO2+O22SO3。当气体的物质的量减少0.315mol时反应达到平衡,在相同温度下测得气体压强为反应前的82.5%。下列有关叙述正确的是( )
A. 三氧化硫生成的速率与二氧化硫消耗的速率相等时反应达到平衡
B. 降低温度,正反应速率减小,逆反应速率增大
C. 平衡混合气体通入过量氯化钡溶液中,得到沉淀的质量为161.980g
D. 达到平衡时,二氧化硫的转化率为90%
【答案】D
【解析】
【详解】A.SO3生成速率与SO2的消耗速率都是正反应速率,两者始终相等,不能作为判断化学平衡的依据,故A错误;
B.降低温度,正反应速率和逆反应速率都减小,故B错误;
C.设二氧化硫起始物质的量是xmol,平衡时转化的二氧化硫为ymol,则:
2SO2(g)+O2(g)2SO3(g)
起始量(mol): x 1.100 0
转化量(mol): y 0.5y y
平衡量(mol): x-y 1.100-0.5y y
气体总物质的量减少0.315mol时反应达到平衡,则0.5y=0.315,故y=0.63,在相同的温度下测得气体压强为反应前的82.5%,则×100%=82.5%,故x=0.7。将混合气体通入过量的氯化钡溶液中,三氧化硫和氯化钡溶液反应生成硫酸钡沉淀,二氧化硫与氧气、水反应生成硫酸,硫酸与氯化钡反应生成硫酸钡沉淀,0.7mol二氧化硫完全转化消耗0.35mol氧气,氧气有剩余,根据硫元素守恒,硫酸钡的物质的量是0.7mol,故其质量为0.7mol×233g/mol=163.1g,故C错误;
D.达到平衡时,SO2的转化率=×100%=90%,故D正确。
故选D。
16.将CH4设计成燃料电池,其利用率更高,装置示意如图(A、B为多孔性碳棒)持续通入甲烷,在标准状况下,消耗甲烷体积VL。则下列说法错误的是( )
A. 通入CH4的一端为原电池的负极,通入空气的一端为原电池的正极
B. 0<V≤22.4 L时,电池总反应的化学方程式为CH4+2O2+2KOH=K2CO3+3H2O
C. 22.4 L<V≤44.8 L时,负极电极反应为CH4-8e-++3H2O=
D. V=33.6 L时,溶液中只存在阴离子
【答案】D
【解析】
【分析】因为n(KOH)=2mol/L×1L=2mol,故随着CH4通入的量逐渐增加,可能先后发生反应①CH4+2O2=CO2+2H2O、②CO2+2KOH=K2CO3+H2O、③K2CO3+CO2+H2O=2KHCO3;再根据甲烷的量计算生成的二氧化碳的量,结合反应方程式判断反应产物及发生的反应。
【详解】A. 燃料电池中,通入CH4的一端发生氧化反应,为原电池的负极;通入空气(O2)的一端发生还原反应,为原电池的正极,不选A项;
B. 当0<V≤22.4L时,0<n(CH4)≤1mol,则0<n(CO2)≤1mol,又因为电解质溶液中n(KOH)=2mol,故KOH过量,所以电池总反应式为CH4+2O2+2KOH=K2CO3+3H2O,不选B项;
C. 当22.4 L<V≤44.8L,1mol<n(CH4)≤2mol,则1mol<n(CO2)≤2mol,发生反应①②③,得到K2CO3和KHCO3溶液,则负极反应式为,不选C项;
D. 当V=33.6L时,n(CH4)=1.5mol,n(CO2)=1.5mol,则电池总反应式为3CH4+6O2+4KOH=K2CO3+2KHCO3+7H2O,则得到0.5molK2CO3和1molKHCO3的溶液,故溶液中的阴离子有和,选择D项。
答案选D。
第II卷(非选择题,共52分)
二.实验题,本大题共2小题,共20分。
17.通过测定反应过程中所放出的热量可计算中和热。50mL 0.50mol/L盐酸与50mL 0.55mol/LNaOH溶液在图示的装置中进行中和反应.回答下列问题:
(1)从实验装置上看,图中尚缺少的一种玻璃仪器是___________.
(2)大烧杯上如果不盖硬纸板,求得的中和热数值__________(填“偏大”,“偏小”或“无影响”).
(3)实验中改用60mL 0.50mol/L盐酸跟50mL 0.55mol/LNaOH溶液进行反应,与上述实验相比,所求中和热________(填“相等”“不相等”),简述理由:______________________.
(4)若两溶液的密度都是1g/mL,中和后所得溶液的比热容c=4.18J/(g·℃),三次平行操作测得终止温度与起始温度差(t2﹣t1)分别为:①3.2℃ ②2.2℃ ③3.0℃,写出表示盐酸与NaOH溶液反应的中和热的热化学方程式________________________.(小数点后保留一位小数)
【答案】(1). 环形玻璃搅拌棒 (2). 偏小 (3). 相等 (4). 因为中和热是指酸跟碱发生中和反应生成1 mol H2O所放出的能量,与酸碱的用量无关 (5). HCl(aq)+NaOH(aq)=NaCl(aq)+H2O(l)△H=﹣51.8 kJ/mol
【解析】
【详解】(1)从实验装置上看,图中尚缺少的一种玻璃仪器是用于搅拌的环形玻璃搅拌棒;
(2)大烧杯上如果不盖硬纸板,会导致热量散失,测得的温差会比真实值小,求得的中和热数值偏小;
(3)中和热是指酸跟碱发生中和反应生成1molH2O(l)所放出的能量,与酸碱的用量无关,所以求得的中和热数值相等;
(4))三次平行操作测得终止温度与起始温度差(t2-t1)分别为:①3.2℃ ②2.2℃ ③3.0℃,由于第②组数据与其他两组相差较大,将第②组舍去,温度差的平均值为3.1℃,50mL 0.50mol/L盐酸与50mL 0.55mol/LNaOH溶液进行中和反应生成水的物质的量为0.05L×0.5mol/L=0.025mol,溶液的质量为100ml×1g/ml=100g,则生成0.025mol水放出的热量为Q=m•c•△T=100g×4.18J/(g•℃)×3.1℃=1259.8J,即1.2598kJ,所以实验测得的中和热,该反应的热化学方程式:HCl(aq)+NaOH(aq)=NaCl(aq)+H2O(l)△H=-51.8 kJ/mol。
18.某组甲乙同学进行稀硫酸与锌制取氢气的实验,请回答下列问题:
(1)甲同学发现加入少量硫酸铜溶液可加快氢气的生成速率。为了进一步研究硫酸铜的量对氢气生成速率的影响,设计了如下一系列实验。将表中所给的混合溶液分别加入到6个盛有过量Zn粒的反应瓶中,收集产生的气体,记录获得相同体积的气体所需时间。
实验
混合溶液
A
B
C
D
E
F
4 mol·L-1 H2SO4/mL
30
V1
V2
V3
V4
V5
饱和CuSO4溶液/mL
0
0.5
2.5
5
V6
20
H2O/mL
V7
V8
V9
V10
10
0
①请完成此实验设计,其中:V1=___,V6=___,V9=___;
②反应一段时间后,实验A中的金属呈___色,实验E中的金属呈___色;
③该同学最后得出的结论为:当加入少量CuSO4溶液时,生成氢气的速率会大大提高。但当加入的CuSO4溶液超过一定量时,生成氢气的速率反而会下降。请分析氢气生成速率下降的主要原因___________________________。
(2)乙同学为了探究锌与稀硫酸反应过程中的速率及能量的变化,进行以下实验,分析影响反应速率的因素。
实验时,从断开K开始,每间隔1分钟,交替断开或闭合K,并连续计数每1分钟内从a管流出的水滴数,得到的水滴数如下表所示:
1分钟水滴数(断开K)
34
59
86
117
…
102
1分钟水滴数(闭合K)
58
81
112
139
…
78
分析反应过程中的水滴数,请回答:
① 由水滴数58>34、81>59,说明在反应初期,闭合K时比断开K时的反应速率快,主要原因是__________________________________________________________。
② 由水滴数102>78,说明在反应后期,断开K时的反应速率快于闭合K时的反应速率,主要原因是____________________________________。
【答案】(1). 30 (2). 10 (3). 17.5 (4). 灰黑 (5). 暗红 (6). 当加入一定量的CuSO4后,生成的单质Cu会沉积在Zn的表面,减少了Zn与溶液的接触面积 (7). 形成原电池反应速度快 (8). 断开K时,溶液中的c(H+)大于闭合K时溶液中的c(H+),c(H+)的影响是主要因素
【解析】
【分析】(1)①为保证实验有对比性,只能改变一个变量分析,CuSO4溶液体积逐渐增多,故H2SO4的量应相等均为30mL,水的量减小,但每组实验中CuSO4与水的体积之和应相等;
②实验A中锌粒与稀硫酸反应,因锌粒不纯,表面会有杂质的颜色;而实验E中生成的单质Cu会沉积在Zn的表面;
③锌粒与硫酸铜反应生成的铜会附在锌粒表面;
(2)①原电池可加快化学反应速率;
②根据氢离子浓度大小与速率的关系分析;
【详解】(1)①要对比试验效果,那么除了反应的物质的量不一样以外,要保证其它条件相同,而且是探究硫酸铜量的影响,那么每组硫酸的量要保持相同,六组反应的总体积也应该相同,故A组中硫酸为30mL,那么其它组硫酸量也都为30mL;而硫酸铜溶液和水的总量应相同,F组中硫酸铜20mL,水为0,那么总量为20mL,所以V6=10mL,V9=17.5mL,V1=30mL,故答案为:30;10;17.5;
②不纯的锌粒中含有Pb、Bi、Sn等杂质,实验A中锌粒与稀硫酸反应后, 这些不活泼的金属杂质游离出来,以颗粒状沉积在锌粒表面呈灰黑色;而实验E中过量的锌粒会与硫酸铜反应生成铜,形成原电池,加快化学反应速率,因此该实验中暗红色的铜会附着在锌粒表面,故答案为:灰黑;暗红;
③因为锌会先与硫酸铜反应,直至硫酸铜反应完才与硫酸反应生成氢气,硫酸铜量较多时,反应时间较长,而且生成的铜会附着在锌片上,会阻碍锌片与硫酸继续反应,氢气生成速率下降,故答案为:当加入一定量的CuSO4后,生成的单质Cu会沉积在Zn的表面,减少了Zn与溶液的接触面积;
(2)①因在反应初期,形成了原电池,所有闭合K时比断开K时的反应速率快,故答案为:形成原电池反应速度快;
②由于反应前期形成原电池反应速率快,氢离子消耗的多,则在后期,闭合K时溶液中氢离子浓度小,氢离子浓度越小反应速率越小,断开K时,溶液中的c(H+)大于闭合K时溶液中的c(H+),所以在反应后期,断开K时的反应速率快于闭合K时的反应速率;
故答案为:断开K时,溶液中的c(H+)大于闭合K时溶液中的c(H+),c(H+)的影响是主要因素;
三.填空题,本大题共2小题,共32分。
19.环戊二烯()是重要的有机化工原料,广泛用于农药、橡胶、塑料等生产。回答下列问题:
(1)已知:(g)= (g)+H2(g) ΔH1=100.3 kJ·mol −1 ①
H2(g)+ I2(g)=2HI(g) ΔH2=﹣11.0 kJ·mol −1 ②
对于反应:(g)+ I2(g)=(g)+2HI(g) ③ ΔH3=___________kJ·mol −1。
(2)某温度下,等物质的量的碘和环戊烯()在刚性容器内发生反应③,起始总压为105Pa,平衡时总压增加了20%,环戊烯的转化率为_________,该反应的平衡常数Kp=_________Pa。达到平衡后,欲增加环戊烯的平衡转化率,可采取的措施有__________(填标号)。
A.通入惰性气体 B.提高温度
C.增加环戊烯浓度 D.增加碘浓度
(3)环戊二烯容易发生聚合生成二聚体,该反应为可逆反应。不同温度下,溶液中环戊二烯浓度与反应时间的关系如图所示,下列说法正确的是__________(填标号)。
A.T1>T2
B.a点的反应速率小于c点的反应速率
C.a点的正反应速率大于b点的逆反应速率
D.b点时二聚体的浓度为0.45 mol·L−1
(4)环戊二烯可用于制备二茂铁(Fe(C5H5)2结构简式为),后者广泛应用于航天、化工等领域中。二茂铁电化学制备原理如下图所示,其中电解液为溶解有溴化钠(电解质)和环戊二烯的DMF溶液(DMF为惰性有机溶剂)。
该电解池的阳极为____________,总反应为__________________。电解制备需要在无水条件下进行,原因为_________________________。
【答案】(1). 89.3 (2). 40% (3). 3.56×104 (4). BD (5). CD (6). Fe电极 (7). Fe+2+H2↑(Fe+2C5H6Fe(C5H5)2+H2↑) (8). 水会阻碍中间物Na的生成;水会电解生成OH−,进一步与Fe2+反应生成Fe(OH)2
【解析】
【分析】(1)利用盖斯定律解题;
(2)利用差量法计算转化率;三行式法计算平衡常数;根据平衡移动原理解释;
(3)通过外界因素对速率的影响和平衡状态的形成分析A、B、C选项,D选项观察图象计算;
(4)根据阳极:升失氧;阴极:降得还进行分析确定阴阳极;根据题干信息中Na元素的变化确定环戊二烯得电子数和还原产物,进而写出电极反应式;注意Na与水会反应,Fe2+在碱性条件下生成沉淀。
【详解】(1)根据盖斯定律①-②,可得反应③的ΔH=89.3kJ/mol;
答案:89.3;
(2)假设反应前碘单质与环戊烯均为nmol,平衡时环戊烯反应了xmol,根据题意可知;
(g)+I2(g)= (g)+2HI(g) 增加的物质的量
1mol 1mol 1mol 2mol 1mol
xmol 2n×20%
得x=0.4nmol,转化率为0.4n/n×100%=40%;
(g) + I2(g)= (g)+ 2HI(g)
P(初) 0.5×105 0.5×105 0 0
ΔP 0.5×105×40% 0.5×105×40% 0.5×105×40% 1×105×40%
P(平) 0.3×105 0.3×105 0.2×105 0.4×105
Kp==3.56×104;
A.T、V一定,通入惰性气体,由于对反应物和生成物浓度无影响,速率不变,平衡不移动,故A错误;
B.升高温度,平衡向吸热方向移动,环戊烯转化率升高,故B正确;
C.增加环戊烯的浓度平衡正向移动,但环戊烯转化率降低,故C错误;
D,增加I2的浓度,平衡正向移动,环戊烯转化率升高,故D正确;
答案:40%;3.56×104;BD;
(3)A.温度越高化学反应速率越快,单位时间内反应物浓度减少越多,则T1
C. a点、b点反应一直在正向进行,故v(正)>v(逆),a点反应物浓度大于b点,故a点正反应速率大于b点,故C正确;
D.b点时环戊二烯浓度由1.5mol/L减小到0.6mol/L,减少了0.9mol/L,因此生成二聚体0.45mol/L,故D正确;
答案:CD;
(4)根据阳极升失氧可知Fe为阳极;根据题干信息Fe-2e-=Fe2+,电解液中钠离子起到催化剂的作用使得环戊二烯得电子生成氢气,同时与亚铁离子结合生成二茂铁,故电极反应式为Fe+2=+H2↑;电解必须在无水条件下进行,因为中间产物Na会与水反应生成氢氧化钠和氢气,亚铁离子会和氢氧根离子结合生成沉淀;
答案:Fe电极;Fe+2=+H2↑(Fe+2C5H6=Fe(C2H5)2+ H2↑);水会阻碍中间物Na的生成;水会电解生成OH-,进一步与Fe2+反应生成Fe(OH)2。
20.钠硫电池作为一种新型储能电池,其应用逐渐得到重视和发展。
(1)钠硫电池以熔融金属钠、熔融硫和多硫化钠(Na2SX)分别作为两个电极的反应物,固体Al2O3陶瓷(可传导Na+)为电解质,其反应原理如下图所示:
①根据上右表数据,请你判断该电池工作的适宜应控制在_________(填字母)范围内。
物质
Na
S
Al2O3
熔点/℃
97.8
115
2050
沸点/℃
892
444.6
2980
a.100℃以下 b.100~300℃ c.300~350℃ d.350~2050℃
②放电时,电极A为_________极,电极B发生_________反应(填“氧化或还原”)
③充电时,总反应为Na2SX=2Na+xS(3<x<5),则阳极的电极反应式为:________________。
(2)若把钠硫电池作为电源,电解槽内装有KI及淀粉溶液如图所示,槽内的中间用阴离子交换膜隔开。通电一段时间后,发现左侧溶液变蓝色,一段时间后,蓝色逐渐变浅。则右侧发生的电极方程式:___________;试分析左侧溶液蓝色逐渐变浅的可能原因是:___________。
(3)若把钠硫电池作为电源,按如图所示装置进行实验电解乙池和丙池:
当钠硫电池中消耗0.05xmol的S时,理论上乙池中B极的质量增加__________g;此时丙装置中___________(填“C”或“D”)电极析出7.20g金属,则丙装置中的某盐溶液可能是_______(填序号)。
a.MgSO4溶液 b.CuSO4溶液 c.NaCl溶液 d.AgNO3溶液
【答案】(1). C (2). 负 (3). 还原 (4). SX2--2e-=xS (5). 2H2O+2e—=H2↑+2OH—(2H++2e—=H2↑) (6). 右侧溶液中生成的OH—通过阴离子交换膜进入左侧溶液,并与左侧溶液中I2反应等 (7). 10.8 (8). D (9). bd
【解析】
【分析】(1)原电池工作时,控制的温度应为满足Na、S为熔融状态,Na被氧化,应为原电池负极,阳离子向正极移动,充电时,阳极反应为原电池正极反应的逆反应,应生成S,以此解答;
(2)左侧溶液变蓝色,生成I2,左侧电极为阳极,电极反应为:2I--2e-=I2,右侧电极为阴极,电极反应式为:2H2O+2e-=H2↑+2OH-,右侧放出氢气,右侧I-、OH-通过阴离子交换膜向左侧移动,发生反应3I2+6OH-=IO3-+5I-+3H2O,一段时间后,蓝色变浅,保证两边溶液呈电中性,左侧的IO3-通过阴离子交换膜向右侧移动,由此分析解答。
(3)根据串联电路中电子转移数相等,结合电化学的工作原理分析作答。
【详解】(1)①原电池工作时,控制的温度应为满足Na、S为熔融状态,则温度应高于115℃而低于444.6℃,只有C符合,故答案为:C;
②放电时,Na被氧化,则A应为原电池负极,B为正极发生还原反应,故答案为:负;还原;
③充电时,是电解池反应,阳极反应为:SX2--2e-=xS;
(2)根据以上分析,左侧溶液变蓝色,生成I2,左侧电极为阳极,电极反应为:2I−−2e−=I2,右侧电极为阴极,电极反应式为:2H2O+2e—=H2↑+2OH-(2H++2e-=H2↑),右侧I−、OH−通过阴离子交换膜向左侧移动,发生反应3I2+6OH−=IO3−+5I−+3H2O,一段时间后,蓝色变浅,故答案为:2H2O+2e—=H2↑+2OH-(2H++2e-=H2↑);右侧溶液中生成的OH-通过阴离子交换膜进入左侧溶液,并与左侧溶液中I2反应等;
(3)根据反应式SX2--2e-=xS可知,当钠硫电池中消耗0.05xmol的S时,电子转移数为0.1mol,则乙池是电解池,B极上银离子得电子发生还原反应而析出银,根据转移电子数相等,乙池中B极的质量增加0.1mol108g/mol=10.8g;丙池是电解池,阴极上金属离子放电析出金属单质,D连接电源的负极,则D是阴极,电极质量会增加;根据转移电子相等知,当析出金属时,则该金属元素在氢元素之后,ac项错误,bd正确,故答案为:bd。
相关资料
更多