还剩18页未读,
继续阅读
2021届高考物理一轮复习第6章动量第2节动量守恒定律及其应用教案(含解析)
展开
第2节 动量守恒定律及其应用
一、动量守恒定律
1.动量守恒定律的内容
如果一个系统不受外力,或者所受外力的矢量和为零,这个系统的总动量保持不变。
2.动量守恒的数学表达式
(1)p=p′(系统相互作用前总动量p等于相互作用后总动量p′)。
(2)Δp=0(系统总动量变化为零)。
(3)Δp1=-Δp2(相互作用的两个物体组成的系统,两物体动量增量大小相等,方向相反)。
3.动量守恒的条件
(1)系统不受外力或所受外力之和为零时,系统的动量守恒。
(2)系统所受外力之和不为零,但当内力远大于外力时系统动量近似守恒。
(3)系统所受外力之和不为零,但在某个方向上所受合外力为零或不受外力,或外力可以忽略,则在这个方向上,系统动量守恒。
二、碰撞、反冲和爆炸
1.碰撞
(1)概念:碰撞是指物体间的相互作用持续时间很短,而物体间相互作用力很大的现象。
(2)特点:在碰撞现象中,一般都满足内力远大于外力,可认为相互碰撞的物体组成的系统动量守恒。
(3)分类:
动量是否守恒
机械能是否守恒
弹性碰撞
守恒
守恒
非完全弹性碰撞
守恒
有损失
完全非弹性碰撞
守恒
损失最大
2.反冲运动
(1)物体在内力作用下分裂为两个不同部分,并且这两部分向相反方向运动的现象。
(2)反冲运动中,相互作用力一般较大,通常可以用动量守恒定律来处理。
3.爆炸问题
(1)爆炸与碰撞类似,物体间的相互作用力很大,且远大于系统所受的外力,所以系统动量守恒。
(2)爆炸过程中位移很小,可忽略不计,作用后从相互作用前的位置以新的动量开始运动。
1.思考辨析(正确的画“√”,错误的画“×”)
(1)系统所受合外力的冲量为零,则系统动量一定守恒。 (√)
(2)动量守恒是指系统在初、末状态时的动量相等。 (×)
(3)物体相互作用时动量守恒,但机械能不一定守恒。 (√)
(4)在爆炸现象中,动量严格守恒。 (×)
(5)在碰撞问题中,机械能也一定守恒。 (×)
(6)反冲现象中动量守恒、动能增加。 (√)
2.(人教版选修3-5P16T1改编)(多选)如图所示,在光滑的水平面上有一辆平板车,人和车都处于静止状态。一个人站在车上用大锤敲打车的左端,在连续的敲打下,下列说法正确的是( )
A.车左右往复运动
B.车持续向右运动
C.大锤、人和平板车组成的系统水平方向动量守恒
D.当大锤停止运动时,人和车也停止运动
ACD [把人和车看成一个整体,用大锤连续敲打车的左端,根据系统水平方向受力为零,则沿该方向动量守恒,又由系统水平方向总动量为零,则当锤头敲打下去时,大锤向右运动,小车就向左运动,抬起锤头时大锤向左运动,小车向右运动,所以平板车在水平面上左右往复运动,当大锤停止运动时,人和车也停止运动,A、C、D正确。]
3.(教科版选修3-5P17T4、6改编)下列叙述的情况中,系统动量不守恒的是( )
甲 乙
A.如图甲所示,小车停在光滑水平面上,车上的人在车上走动时,人与车组成的系统
B.如图乙所示,子弹射入放在光滑水平面上的木块中,子弹与木块组成的系统
C.子弹射入紧靠墙角的木块中,子弹与木块组成的系统
D.斜向上抛出的手榴弹在空中炸开时
C [对于人和车组成的系统,人和车之间的力是内力,系统所受的外力有重力和支持力,合力为零,系统的动量守恒;子弹射入木块过程中,虽然子弹和木块之间的力很大,但这是内力,木块放在光滑水平面上,系统所受合力为零,动量守恒;子弹射入紧靠墙角的木块时,墙对木块有力的作用,系统所受合力不为零,系统的动量减小;斜向上抛出的手榴弹在空中炸开时,虽然受到重力作用,合力不为零,但爆炸的内力远大于重力,动量近似守恒。故选C。]
4.(人教版选修3-5P21T2改编)质量为m、速度为v的A球与质量为3m的静止的B球发生正碰。碰撞可能是弹性的,也可能是非弹性的,因此,碰撞后B球的速度可能有不同的值,碰撞后B球的速度大小可能是( )
A.0.6v B.0.4v
C.0.2v D.v
B [根据动量守恒定律得mv=mv1+3mv2,则当v2=0.6v时,v1=-0.8v,则碰撞后的总动能E′k=m(-0.8v)2+×3m(0.6v)2=1.72×mv2,大于碰撞前的总动能,违反了能量守恒定律,故A项错误;当v2=0.4v时,v1=-0.2v,则碰撞后的总动能为E′k=m(-0.2v)2+×3m(0.4v)2=0.52×mv2,小于碰撞前的总动能,故可能发生的是非弹性碰撞,B项正确;当v2=0.2v时,v1=0.4v,则碰撞后的A球的速度大于B球的速度,而两球碰撞,A球不可能穿透B球,故C项错误;当v2=v时,v1=-2v,显然碰撞后的总动能大于碰撞前的总动能,故D项错误。]
动量守恒定律的理解及应用
1.动量守恒定律的五个特性
矢量性
动量守恒定律的表达式为矢量方程,解题应选取统一的正方向
相对性
各物体的速度必须是相对同一参考系的速度(一般是相对于地面)
同时性
动量是一个瞬时量,表达式中的p1、p2、…必须是系统中各物体在相互作用前同一时刻的动量,p′1、p′2、…必须是系统中各物体在相互作用后同一时刻的动量
系统性
研究的对象是相互作用的两个或多个物体组成的系统
普适性
动量守恒定律不仅适用于低速宏观物体组成的系统,还适用于接近光速运动的微观粒子组成的系统
2.应用动量守恒定律的解题步骤
(1)明确研究对象,确定系统的组成(系统包括哪几个物体及研究的过程)。
(2)进行受力分析,判断系统动量是否守恒(或某一方向上是否守恒)。
(3)规定正方向,确定初、末状态动量。
(4)由动量守恒定律列出方程。
(5)代入数据,求出结果,必要时讨论说明。
(2019·郑州高三质量预测)如图所示,质量为m=245 g的物块(可视为质点)放在质量为M=0.5 kg的木板左端,足够长的木板静止在光滑水平面上,物块与木板间的动摩擦因数为μ=0.4。质量为m0=5 g的子弹以速度v0=300 m/s沿水平方向射入物块并留在其中(时间极短),g取10 m/s2。子弹射入后,求:
(1)子弹进入物块后子弹和物块一起向右滑行的最大速度v1;
(2)木板向右滑行的最大速度v2。
审题指导:
题干关键
获取信息
子弹进入物块后到一起向右滑行的时间极短
木板速度仍为零
足够长的木板
木板向右滑行的速度v2最大
[解析](1)子弹进入物块后一起向右滑行的初速度即为物块的最大速度,由动量守恒可得
m0v0=(m0+m)v1,解得v1=6 m/s。
(2)当子弹、物块、木板三者同速时,木板的速度最大,由动量守恒定律可得
(m0+m)v1=(m0+m+M)v2,
解得v2=2 m/s。
[答案](1)6 m/s (2)2 m/s
[拓展] 在上例中,物块在木板上滑行的时间t是多少?整个过程共损失了多少机械能?
[解析] 对物块和子弹组成的整体应用动量定理得
-μ(m0+m)gt=(m0+m)v2-(m0+m)v1
解得t=1 s
整个过程损失的机械能为
ΔE=m0v-(m0+m+M)v22=223.5 J。
[答案] 1 s 223.5 J
例题及相关延伸思考旨在让考生掌握动量守恒定律的适用条件及应用方法,会根据相关条件分析有关问题,如“人船模型”和临界极值问题。
人船模型
1.条件
(1)系统由两个物体组成且相互作用前静止,总动量为零。
(2)在相对运动过程中至少有一个方向动量守恒。
2.结论:m1s1+m2s2=0
(1)式中的s1和s2是两物体相对同一惯性参考系的位移(一般相对于地面),二者方向相反,一正一负。
(2)此结论与两物体相对运动的速度大小无关,其相对运动不论是匀速运动还是变速运动,甚至是往返运动,结论都是相同的。此结论跟相互作用力是恒力还是变力也无关。
1.(多选)(2019·安徽安庆五校联考)如图所示,光滑水平面上静止着一辆质量为M的小车,小车上带有一光滑的、半径为R的圆弧轨道。现有一质量为m的光滑小球从轨道的上端由静止开始释放,下列说法中正确的是( )
A.小球下滑过程中,小车和小球组成的系统总动量守恒
B.小球下滑过程中,小车和小球组成的系统总动量不守恒
C.小球下滑过程中,在水平方向上小车和小球组成的系统总动量守恒
D.小球下滑过程中,小车和小球组成的系统机械能守恒
BCD [小车和小球组成的系统在水平方向上所受的合外力为零,则水平方向上动量守恒,竖直方向所受合外力不为零,所以总的动量不守恒;除重力以外的其他外力不做功,小车和小球组成的系统机械能守恒,B、C、D正确。]
2.(2019·湛江联考)如图所示,质量均为m的小车和木箱紧挨着静止在光滑的水平冰面上,质量为2m的小孩站在小车上用力向右迅速推出木箱,木箱相对于冰面运动的速度为v,木箱运动到右侧墙壁时与竖直墙壁发生弹性碰撞,反弹后能被小孩接住,求:
(1)小孩接住木箱后共同速度的大小;
(2)若小孩接住箱子后再次以相对于冰面的速度v将木箱向右推出,木箱仍与竖直墙壁发生弹性碰撞,判断小孩能否再次接住木箱。
[解析](1)取向左为正方向,根据动量守恒定律可得
推出木箱的过程中0=(m+2m)v1-mv,
接住木箱的过程中mv+(m+2m)v1=(m+m+2m)v2。
解得v2=。
(2)若小孩第二次将木箱推出,根据动量守恒定律可得4mv2=3mv3-mv,则v3=v,故小孩无法再次接住木箱。
[答案](1) (2)不能
3.如图所示,甲、乙两船的总质量(包括船、人和货物)分别为10m、12m,两船沿同一直线同一方向运动,速度分别为2v0、v0。为避免两船相撞,乙船上的人将一质量为m的货物沿水平方向抛向甲船,甲船上的人将货物接住,求抛出货物的最小速度。(不计水的阻力和货物在两船之间的运动过程)
[解析] 设乙船上的人抛出货物的最小速度大小为vmin,抛出货物后乙船的速度为v乙。甲船上的人接到货物后甲船的速度为v甲,规定向右的方向为正方向。
对乙船和货物的作用过程,由动量守恒定律得
12mv0=11mv乙-mvmin ①
对货物和甲船的作用过程,同理有
10m×2v0-mvmin=11mv甲 ②
为避免两船相撞应有v甲=v乙 ③
联立①②③式得vmin=4v0。
[答案] 4v0
碰撞问题
1.碰撞现象三规律
2.弹性碰撞的结论
两球发生弹性碰撞时应满足动量守恒和机械能守恒。以质量为m1、速度为v1的小球与质量为m2的静止小球发生正面弹性碰撞为例,则有
m1v1=m1v′1+m2v′2
m1v=m1v′+m2v′
解得v′1=,v′2=
结论:(1)当m1=m2时,v′1=0,v′2=v1(质量相等,速度交换);
(2)当m1>m2时,v′1>0,v′2>0,且v′2>v′1(大碰小,一起跑);
(3)当m10(小碰大,要反弹);
(4)当m1≫m2时,v′1=v1,v′2=2v1(极大碰极小,大不变,小加倍);
(5)当m1≪m2时,v′1=-v1,v′2=0(极小碰极大,小等速率反弹,大不变)。
(一题多变)如图所示,光滑水平轨道上放置长木板A(上表面粗糙)和滑块C,滑块B置于A的左端,三者质量分别为mA=2 kg,mB=1 kg,mC=2 kg。开始时C静止,A、B一起以v0=5 m/s的速度匀速向右运动,A与C发生碰撞(时间极短)后C向右运动,经过一段时间,A、B再次达到共同速度一起向右运动,且恰好不再与C碰撞。求A与C发生碰撞后瞬间A的速度大小。
审题指导:
题干关键
获取信息
A与C碰撞时间极短
系统A、C动量守恒
A、B再次同速,恰好不与C碰撞
最后三者同速
[解析] 长木板A与滑块C处于光滑水平轨道上,两者碰撞时间极短,碰撞过程中滑块B与长木板A间的摩擦力可以忽略不计,长木板A与滑块C组成的系统在碰撞过程中动量守恒,则mAv0=mAvA+mCvC。两者碰撞后,长木板A与滑块B组成的系统在两者达到同速之前所受合外力为零,系统动量守恒,则mAvA+mBv0=(mA+mB)v。长木板A和滑块B达到共同速度后,恰好不再与滑块C碰撞,则最后三者速度相等,vC=v。
联立以上各式,代入数据解得vA=2 m/s。
[答案] 2 m/s
[拓展] 在上例中(1)A与C发生碰撞后粘在一起,则三个物体最终的速度是多少?
(2)在相互作用的整个过程中,系统的机械能损失了多少?
[解析](1)整个作用过程中,A、B、C三个物体组成的系统动量守恒,最终三者具有相同的速度,根据动量守恒
(mA+mB)v0=(mA+mB+mC)v
代入数据可得v=3 m/s。
(2)三者最后的速度v=3 m/s
相互作用前E1=(mA+mB)v=37.5 J
A、B再次达到共同速度时
E2=(mA+mB+mC)v2=22.5 J
机械能损失ΔE=E1-E2=15 J。
[答案](1)3 m/s (2)15 J
碰撞问题解题三策略
(1)抓住碰撞的特点和不同种类碰撞满足的条件,列出相应方程求解。
(2)可熟记一些公式,例如“一动一静”模型中,两物体发生弹性正碰后的速度满足:
v′1=v1 v′2=v1
(3)熟记弹性正碰的一些结论,例如,当两球质量相等时,两球碰撞后交换速度。当m1≫m2,且v2=0时,碰后质量大的速率不变,质量小的速率为2v1。当m1≪m2,且v2=0时,碰后质量小的球原速率反弹。
1.(多选)(2019·银川模拟)A、B两球沿一直线运动并发生正碰,如图所示为两球碰撞前、后的位移随时间变化的图象,a、b分别为A、B两球碰前的位移随时间变化的图线,c为碰撞后两球共同运动的位移随时间变化的图线,若A球质量是m=2 kg,则由图象判断下列结论正确的是 ( )
A.碰撞前、后A球的动量变化量为4 kg·m/s
B.碰撞时A球对B球所施的冲量为-4 N·s
C.A、B两球碰撞前的总动量为3 kg·m/s
D.碰撞中A、B两球组成的系统损失的动能为10 J
ABD [根据题图可知,碰前A球的速度vA=-3 m/s,碰前B球的速度vB=2 m/s,碰后A、B两球共同的速度v=-1 m/s,故碰撞前、后A球的动量变化量为ΔpA=mv-mvA=4 kg·m/s,选项A正确;A球的动量变化量为4 kg·m/s,碰撞过程中动量守恒,B球的动量变化量为-4 kg·m/s,根据动量定理,碰撞过程中A球对B球所施的冲量为-4 N·s,选项B正确;由于碰撞过程中动量守恒,有mvA+mBvB=(m+mB)v,解得mB= kg,故碰撞过程中A、B两球组成的系统损失的动能为ΔEk=mv+mBv-(m+mB)v2=10 J,选项D正确;A、B两球碰撞前的总动量为p=mvA+mBvB=(m+mB)v=- kg·m/s,选项C错误。]
2.三个半径相同的弹性球,静止于光滑水平面的同一直线上,顺序如图所示,已知mA=m,mC=4m。当A以速度v0向B运动,若要使得B、C碰后C具有最大速度,则B的质量应为( )
A.m B.2m
C.3m D.4m
B [设B球的质量为M,以碰撞前A球的速度方向为正,A球与B球发生弹性碰撞,设碰撞后的速度分别为v1和v2,根据A球与B球动量守恒得mv0=mv1+Mv2,由能量守恒定律得mv=mv+Mv,解得v2=;B球与C球发生弹性碰撞,设碰撞后的速度分别为v′2和v3,由能量守恒定律得Mv=Mv′+×(4m)v,规定碰撞前A球的速度方向为正,由动量守恒定律得Mv2=Mv′2+4mv3,解得v3=,故C球碰撞后的速度为v3=·=,由数学关系解得M==2m时,B、C球碰撞后C球的速度最大。]
3.(2019·日照一模)A、B两小球静止在光滑水平面上,用轻弹簧相连接,A、B两球的质量分别为m和M(m
甲 乙
A.L1>L2 B.L1
C.L1=L2 D.不能确定
C [当弹簧压缩到最短时,两球的速度相同,对甲图取A的初速度方向为正方向,由动量守恒定律得:mv=(M+m)v′,由机械能守恒定律得:Ep=mv2-(M+m)v′2,联立解得弹簧压缩到最短时有:Ep=。同理,对乙图取B的初速度方向为正方向,当弹簧压缩到最短时也有:Ep=,两次弹性势能相等,则有:L1=L2,故选项C正确。]
爆炸、反冲问题
爆炸问题
1.(多选)向空中发射一枚炮弹,不计空气阻力,当炮弹的速度v0恰好沿水平方向时,炮弹炸裂成a、b两块,若质量较大的a的速度方向仍沿原来的方向,则 ( )
A.b的速度方向一定与原来速度方向相反
B.从炸裂到落地的这段时间内,a飞行的水平距离一定比b的大
C.a、b一定同时到达水平地面
D.在炸裂过程中,a、b受到的爆炸力的大小一定相等
CD [炮弹炸裂前后动量守恒,选定v0的方向为正方向,则mv0=mava+mbvb,显然vb>0、vb<0、vb=0都有可能,A错误;vb>va、vb
2.(2019·邯郸模拟)如图所示,木块A、B的质量均为m,放在一段粗糙程度相同的水平地面上,木块A、B间夹有一小块炸药(炸药的质量可以忽略不计)。让A、B以初速度v0一起从O点滑出,滑行一段距离后到达P点,速度变为,此时炸药爆炸使木块A、B脱离,发现木块B立即停在原位置,木块A继续沿水平方向前进。已知O、P两点间的距离为s,设炸药爆炸时释放的化学能全部转化为木块的动能,爆炸时间很短可以忽略不计,求:
(1)木块与水平地面间的动摩擦因数μ;
(2)炸药爆炸时释放的化学能。
[解析](1)从O滑到P,对A、B由动能定理得
-μ·2mgs=×2m-×2mv,
解得μ=。
(2)在P点爆炸时,A、B组成的系统动量守恒,有
2m·=mv,
根据能量守恒定律有
E0+×2m=mv2,
解得E0=mv。
[答案](1) (2)mv
爆炸现象的三个规律
动量守恒
由于爆炸是在极短的时间内完成的,爆炸物体间的相互作用力远远大于受到的外力,所以在爆炸过程中,系统的总动量守恒
动能增加
在爆炸过程中,由于有其他形式的能量(如化学能)转化为动能,所以爆炸后系统的总动能增加
位置不变
爆炸的时间极短,因而作用过程中,物体产生的位移很小,一般可忽略不计,可以认为爆炸后仍然从爆炸前的位置以新的动量开始运动
反冲问题
3.如图所示,质量为M的小船在静止水面上以速率v0向右匀速行驶,一质量为m的救生员站在船尾,相对小船静止。若救生员以相对水面速率v水平向左跃入水中,则救生员跃出后小船的速率为( )
A.v0+v B.v0-v
C.v0+(v0+v) D.v0+(v0-v)
C [以水面为参考系,根据动量守恒定律(M+m)v0=-mv+Mv1,可解得C正确。]
4.如图所示,一枚火箭搭载着卫星以速率v0进入太空预定位置,由控制系统使箭体与卫星分离。已知前部分的卫星质量为m1,后部分的箭体质量为m2,分离后箭体以速率v2沿火箭原方向飞行,若忽略空气阻力及分离前后系统质量的变化,则分离后卫星的速率v1为( )
A.v0-v2 B.v0+v2
C.v0-v2 D.v0+(v0-v2)
D [火箭和卫星组成的系统,在分离前后沿原运动方向上动量守恒,由动量守恒定律有:(m1+m2)v0=m1v1+m2v2,解得:v1=v0+(v0-v2),D项正确。]
对反冲运动的三点说明
作用原理
反冲运动是系统内物体之间的作用力和反作用力产生的效果
动量守恒
反冲运动中系统不受外力或内力远大于外力,所以反冲运动遵循动量守恒定律
机械能增加
反冲运动中,由于有其他形式的能转化为机械能,所以系统的总机械能增加
动量和能量观点的综合应用
“滑块——弹簧”模型
如图所示,A、B、C三个木块的质量均为m,置于光滑的水平面上,B、C之间有一轻质弹簧,弹簧的两端与木块接触可不固连,将弹簧压紧到不能再压缩时用细线把B、C紧连,使弹簧不能伸展,以至于B、C可视为一个整体。现A以初速度v0沿B、C的连线方向朝B运动,与B相碰并黏合在一起。以后细线突然断开,弹簧伸展,从而使C与A、B分离。已知C离开弹簧后的速度恰为v0,求弹簧释放的势能。
思路点拨:解此题要注意以下关键信息:
(1)“B、C可视为一个整体”表明A与B碰后,三者共速。
(2)“A与B碰后黏在一起”表明C离开弹簧时,A、B有共同的速度。
[解析] 设碰后A、B和C共同速度的大小为v,由动量守恒定律得
3mv=mv0 ①
设C离开弹簧时,A、B的速度大小为v1,由动量守恒定律得
3mv=2mv1+mv0 ②
设弹簧的弹性势能为Ep,从细线断开到C与弹簧分开的过程中机械能守恒,有
(3m)v2+Ep=(2m)v+mv ③
由①②③式得弹簧所释放的势能为Ep=mv。
[答案] mv
“滑块——弹簧”模型的几点注意
对两个(或两个以上)物体与弹簧组成的系统在相互作用的过程中,要关注以下四点
(1)在能量方面,由于弹簧的形变会具有弹性势能,系统的总动能将发生变化,若系统所受的外力和除弹簧弹力以外的内力不做功,系统机械能守恒。
(2)在动量方面,系统动量守恒。
(3)弹簧处于最长(最短)状态时两物体速度相等,弹性势能最大,系统动量守恒,机械能守恒。
(4)弹簧处于原长时,弹性势能为零。
1.如图所示,放在光滑水平桌面上的A、B两小木块中部夹一被压缩的轻弹簧,当轻弹簧被放开时,A、B两小木块各自在桌面上滑行一段距离后,飞离桌面落在地面上。若mA=3mB,则下列结果正确的是( )
A.若轻弹簧对A、B做功分别为W1和W2,则有W1∶W2=1∶1
B.在与轻弹簧作用过程中,两木块的速度变化量之和为零
C.若A、B在空中飞行时的动量变化量分别为Δp1和Δp2,则有Δp1∶Δp2=1∶1
D.若A、B同时离开桌面,则从释放轻弹簧开始到两木块落地的这段时间内,A、B两木块的水平位移大小之比为1∶3
D [弹簧弹开木块过程中,两木块及弹簧组成的系统动量守恒,取水平向左为正方向,由动量守恒定律得mAvA-mBvB=0,则速度之比vA∶vB=1∶3,根据动能定理得:轻弹簧对A、B做功分别为W1=mAv,W2=mBv,联立解得W1∶W2=1∶3,选项A错误;根据动量守恒定律得知,在与轻弹簧作用过程中,两木块的动量变化量之和为零,即mAΔvA+mBΔvB=0,可得,ΔvA+ΔvB≠0,选项B错误;A、B离开桌面后都做平抛运动,它们抛出点的高度相同,运动时间相等,设为t,由动量定理得A、B在空中飞行时的动量变化量分别为Δp1=mAgt,Δp2=mBgt,所以Δp1∶Δp2=3∶1,选项C错误;平抛运动水平方向的分运动是匀速直线运动,由x=v0t知,t相等,则A、B两木块的水平位移大小之比等于vA∶vB=1∶3,选项D正确。]
2.如图所示,质量为m2=2 kg和m3=3 kg的物体静止放在光滑水平面上,两者之间有压缩着的轻弹簧(与m2、m3不拴接)。质量为m1=1 kg的物体以速度v0=9 m/s向右冲来,为防止冲撞,释放弹簧将m3物体发射出去,m3与m1碰撞后粘合在一起。试求:
(1)m3的速度至少为多大,才能使以后m3和m2不发生碰撞?
(2)为保证m3和m2恰好不发生碰撞,弹簧的弹性势能至少为多大?
[解析](1)设m3发射出去的速度为v1,m2的速度为v2,以向右的方向为正方向,对m2、m3,由动量守恒定律得
m2v2-m3v1=0。
只要m1和m3碰后速度不大于v2,则m3和m2就不会再发生碰撞,m3和m2恰好不相撞时,两者速度相等。
对m1、m3,由动量守恒定律得
m1v0-m3v1=(m1+m3)v2
解得v1=1 m/s,即弹簧将m3发射出去的速度至少为1 m/s。
(2)对m2、m3及弹簧组成的系统,由机械能守恒定律得
Ep=m3v+m2v=3.75 J。
[答案](1)1 m/s (2)3.75 J
“滑块——平板”模型
(2019·黄山模拟)如图所示,质量m1=4.0 kg的小车静止在光滑的水平面上,车长L=1.5 m,现有质量m2=1.0 kg可视为质点的物块,以水平向右的速度v0=5 m/s从左端滑上小车,最后在车面上某处与小车保持相对静止。物块与车面间的动摩擦因数μ=0.5,g取10 m/s2。求:
(1)物块在车面上滑行的时间t;
(2)要使物块不从小车右端滑出,物块滑上小车左端的速度v′0不超过多少。
审题指导:
题干关键
获取信息
相对静止
最后共速
要使物块不从小车右端滑出
物块滑到车右端与小车共速
[解析](1)设物块与小车的共同速度为v,以水平向右为正方向,根据动量守恒定律有m2v0=(m1+m2)v,
设物块与车面间的滑动摩擦力为f,对物块应用动量定理有-ft=m2v-m2v0,
其中f=μm2g,
联立以上三式解得t=
代入数据得t= s=0.8 s。
(2)要使物块恰好不从小车右端滑出,物块滑到车面右端时与小车有共同的速度v′,则有
m2v′0=(m1+m2)v′,
由功能关系有
m2v′=(m1+m2)v′2+μm2gL,
代入数据解得v′0= m/s。
故要使物块不从小车右端滑出,物块滑上小车左端的速度v′0不能超过 m/s。
[答案](1)0.8 s (2) m/s
[拓展] 在上例中若改为小车右端连一个四分之一光滑圆弧轨道,其总质量仍为m1,小车水平部分长度仍为L,圆弧轨道与小车水平面在点O′相切,如图所示。物块仍以v0=5 m/s的速度从左端滑上小车,物块恰能到达圆弧轨道的最高点A,求:
(1)光滑圆弧轨道的半径;
(2)物块与小车最终相对静止时,它距点O′的距离。
[解析](1)小车和物块组成的系统水平方向动量守恒,设物块到达圆弧轨道最高点A时,二者的共同速度为v1,
由动量守恒得m2v0=(m1+m2)v1,
由能量守恒得m2v-(m1+m2)v=m2gR+μm2gL,
联立并代入数据解得R=0.25 m。
(2)设物块最终与车相对静止时,二者的共同速度为v2,从物块滑上小车,到二者相对静止的过程中,由动量守恒得m2v0=(m1+m2)v2,
设物块与车最终相对静止时,它距O′点的距离为x,由能量守恒得m2v-(m1+m2)v=μm2g(L+x),
联立并代入数据解得x=0.5 m。
[答案](1)0.25 m (2)0.5 m
“滑块——木板”模型的三大特点
(1)当滑块和木板的速度相等时木板的速度最大,两者的相对位移取得极值。
(2)系统的动量守恒,但系统的机械能不守恒,摩擦力与两者相对位移的乘积等于系统机械能的减少量,当两者的速度相等时,系统机械能损失最大。
(3)解决该类问题,既可以从动量、能量两方面解题,也可以从力和运动的角度借助图象求解。
3.(2019·陕西汉中中学月考)如图所示,质量为M、长为L的长木板放在光滑水平面上,一个质量也为M的物块(可视为质点)以一定的初速度从左端冲上木板,如果长木板是固定的,物块恰好停在木板的右端,如果长木板不固定,则物块冲上木板后在木板上滑行的距离为( )
A.L B.
C. D.
C [设物块受到的滑动摩擦力为f,物块的初速度为v0。如果长木板是固定的,物块恰好停在木板的右端,对小滑块的滑动过程运用动能定理得-fL=0-Mv,如果长木板不固定,物块冲上木板后,物块向右减速的同时,木板要加速,最终两者一起做匀速运动,该过程系统所受外力的合力为零,动量守恒,规定向右为正方向,根据动量守恒定律得Mv0=(M+M)v1,对系统运用能量守恒定律有fL′=Mv-(2M)v,联立解得L′=,故C正确,A、B、D错误。]
4.(2019·济宁一模)如图所示,质量为M=2 kg的木板A静止在光滑水平面上,其左端与固定台阶相距x,右端与一固定在地面上的半径R=0.4 m的光滑四分之一圆弧紧靠在一起,圆弧的底端与木板上表面水平相切。质量为m=1 kg的滑块B(可视为质点)以初速度v0= m/s从圆弧的顶端沿圆弧下滑,B从A右端的上表面水平滑入时撤走圆弧。A与台阶碰撞无机械能损失,不计空气阻力,A、B之间动摩擦因数μ=0.1,A足够长,B不会从A表面滑出,取g=10 m/s2。
(1)求滑块B到圆弧底端时的速度大小v1;
(2)若A与台阶碰前,已和B达到共速,求A向左运动的过程中与B摩擦产生的热量Q(结果保留两位有效数字);
(3)若A与台阶只发生一次碰撞,求x满足的条件。
[解析](1)滑块B从释放到最低点,由动能定理得
mgR=mv-mv
解得v1=4 m/s。
(2)向左运动过程中,由动量守恒定律得
mv1=(m+M)v2
解得v2= m/s
由能量守恒定律得Q=mv-(m+M)v
解得Q=5.3 J。
(3)从B刚滑到A上到A左端与台阶碰撞前瞬间,由动量守恒定律得mv1=mv3+Mv4
若A与台阶只发生一次碰撞,碰后需满足
mv3≤Mv4
对A板,由动能定理得μmgx=Mv-0
联立解得x≥1 m。
[答案](1)4 m/s (2)5.3 J (3)x≥1 m
[示例] (20分)如图所示,在光滑水平桌面EAB上有质量为M=0.2 kg的小球P和质量为m=0.1 kg的小球Q,P、Q之间压缩一轻弹簧(轻弹簧与两小球不拴接),桌面边缘E处放置一质量也为m=0.1 kg的橡皮泥球S,在B处固定一与水平桌面相切的光滑竖直半圆形轨道。释放被压缩的轻弹簧,P、Q两小球被轻弹簧弹出,小球P与弹簧分离后进入半圆形轨道,恰好能够通过半圆形轨道的最高点C;小球Q与弹簧分离后与桌面边缘的橡皮泥球S碰撞后合为一体飞出,落在水平地面上的D点。已知水平桌面高为h=0.2 m,D点到桌面边缘的水平距离为x=0.2 m,重力加速度为g=10 m/s2,求:
(1)小球P经过半圆形轨道最低点B时对轨道的压力大小F′NB;
(2)小球Q与橡皮泥球S碰撞前瞬间的速度大小vQ;
(3)被压缩的轻弹簧的弹性势能Ep。
审题破题:(1)“P、Q两小球被轻弹簧弹出”动量守恒定律和能量守恒定律。
(2)“小球P……恰好能够通过半圆形轨道的最高点C”Mg=。
(3)“小球Q……球S碰撞后为一体”动量守恒定律。
(4)“小球Q……一体飞出”二者一起做平抛运动。
[规律解答](1)小球P恰好能通过半圆形轨道的最高点C,则有Mg=M (1分)
解得vC= (1分)
对于小球P,从B→C,
由动能定理有-2MgR=Mv-Mv (2分)
解得vB= (1分)
在B点有FNB-Mg=M (2分)
解得FNB=6Mg=12 N (1分)
由牛顿第三定律有F′NB=FNB=12 N。 (1分)
(2)设Q与S做平抛运动的初速度大小为v,所用时间为t,
根据公式h=gt2得
t=0.2 s (1分)
根据公式x=vt,得v=1 m/s (1分)
碰撞前后Q和S组成的系统动量守恒,则有
mvQ=2mv (2分)
解得vQ=2 m/s。 (1分)
(3)P、Q和弹簧组成的系统动量守恒,则有MvP=mvQ (2分)
解得vP=1 m/s (1分)
P、Q和弹簧组成的系统,由能量守恒定律有
Ep=Mv+mv (2分)
解得Ep=0.3 J。 (1分)
[答案](1)12 N (2)2 m/s (3)0.3 J
规范解答“四部曲”
1.文字说明规范
文字说明要用规范的物理语言和符号。对题干中未出现的字母进行说明时,字母书写要规范。设定所求的物理量或解题过程中用到的中间变量,可表述为设……,令……等。
2.列方程规范
列方程时要做到“三要三不要”。
一是要写出方程式而不要堆砌公式;
二是要原始式而不是变形式;
三是要分步列式,不要用连等式。
3.演算过程规范
要写出主要演算过程,有必要的关联词。一般表述为:将……代入……,由……式可得等。
4.结果表达规范
对题中所求得物理量应有明确的回答,要写出最后结果的单位。答案中不能含有未知量和中间量。
[即时训练]
(2019·潍坊二模)如图所示,一质量M=4 kg的小车静置于光滑水平地面上,左侧用固定在地面上的销钉挡住。小车上表面由光滑圆弧轨道BC和水平粗糙轨道CD组成,BC与CD相切于C,BC所对圆心角θ=37°,CD长L=3 m。质量m=1 kg的小物块从某一高度处的A点以v0=4 m/s的速度水平抛出,恰好沿切线方向自B点进入圆弧轨道,滑到D点时刚好与小车达到共同速度v=1.2 m/s。取g=10 m/s2,sin 37°=0.6,忽略空气阻力。
(1)求A、B间的水平距离x;
(2)求小物块从C滑到D所用时间t0;
(3)若在小物块抛出时拔掉销钉,求小车向左运动到最大位移时滑块离小车左端的水平距离。
[解析](1)由平抛运动的规律得
tan θ= (2分)
x=v0t (2分)
解得x=1.2 m。 (2分)
(2)物块在小车上CD段滑动过程中,由动量守恒定律得
mv1=(M+m)v (2分)
由功能关系得
fL=mv-(M+m)v2 (2分)
对物块,由动量定理得
-ft0=mv-mv1 (2分)
得t0=1 s。 (1分)
(3)有销钉时
mgH+mv=mv (1分)
由几何关系得
H-gt2=R(1-cos θ)
B、C间水平距离xBC=Rsin θ (1分)
μmgL=mv-(M+m)v2(或f=μmg) (1分)
若拔掉销钉,小车向左运动达最大位移时,速度为0,由系统水平方向动量守恒可知,此时物块速度为4 m/s (1分)
由能量守恒定律得mgH=μmg(Δx-xBC) (1分)
解得Δx=3.73 m。 (1分)
[答案](1)1.2 m (2)1 s (3)3.73 m
21
一、动量守恒定律
1.动量守恒定律的内容
如果一个系统不受外力,或者所受外力的矢量和为零,这个系统的总动量保持不变。
2.动量守恒的数学表达式
(1)p=p′(系统相互作用前总动量p等于相互作用后总动量p′)。
(2)Δp=0(系统总动量变化为零)。
(3)Δp1=-Δp2(相互作用的两个物体组成的系统,两物体动量增量大小相等,方向相反)。
3.动量守恒的条件
(1)系统不受外力或所受外力之和为零时,系统的动量守恒。
(2)系统所受外力之和不为零,但当内力远大于外力时系统动量近似守恒。
(3)系统所受外力之和不为零,但在某个方向上所受合外力为零或不受外力,或外力可以忽略,则在这个方向上,系统动量守恒。
二、碰撞、反冲和爆炸
1.碰撞
(1)概念:碰撞是指物体间的相互作用持续时间很短,而物体间相互作用力很大的现象。
(2)特点:在碰撞现象中,一般都满足内力远大于外力,可认为相互碰撞的物体组成的系统动量守恒。
(3)分类:
动量是否守恒
机械能是否守恒
弹性碰撞
守恒
守恒
非完全弹性碰撞
守恒
有损失
完全非弹性碰撞
守恒
损失最大
2.反冲运动
(1)物体在内力作用下分裂为两个不同部分,并且这两部分向相反方向运动的现象。
(2)反冲运动中,相互作用力一般较大,通常可以用动量守恒定律来处理。
3.爆炸问题
(1)爆炸与碰撞类似,物体间的相互作用力很大,且远大于系统所受的外力,所以系统动量守恒。
(2)爆炸过程中位移很小,可忽略不计,作用后从相互作用前的位置以新的动量开始运动。
1.思考辨析(正确的画“√”,错误的画“×”)
(1)系统所受合外力的冲量为零,则系统动量一定守恒。 (√)
(2)动量守恒是指系统在初、末状态时的动量相等。 (×)
(3)物体相互作用时动量守恒,但机械能不一定守恒。 (√)
(4)在爆炸现象中,动量严格守恒。 (×)
(5)在碰撞问题中,机械能也一定守恒。 (×)
(6)反冲现象中动量守恒、动能增加。 (√)
2.(人教版选修3-5P16T1改编)(多选)如图所示,在光滑的水平面上有一辆平板车,人和车都处于静止状态。一个人站在车上用大锤敲打车的左端,在连续的敲打下,下列说法正确的是( )
A.车左右往复运动
B.车持续向右运动
C.大锤、人和平板车组成的系统水平方向动量守恒
D.当大锤停止运动时,人和车也停止运动
ACD [把人和车看成一个整体,用大锤连续敲打车的左端,根据系统水平方向受力为零,则沿该方向动量守恒,又由系统水平方向总动量为零,则当锤头敲打下去时,大锤向右运动,小车就向左运动,抬起锤头时大锤向左运动,小车向右运动,所以平板车在水平面上左右往复运动,当大锤停止运动时,人和车也停止运动,A、C、D正确。]
3.(教科版选修3-5P17T4、6改编)下列叙述的情况中,系统动量不守恒的是( )
甲 乙
A.如图甲所示,小车停在光滑水平面上,车上的人在车上走动时,人与车组成的系统
B.如图乙所示,子弹射入放在光滑水平面上的木块中,子弹与木块组成的系统
C.子弹射入紧靠墙角的木块中,子弹与木块组成的系统
D.斜向上抛出的手榴弹在空中炸开时
C [对于人和车组成的系统,人和车之间的力是内力,系统所受的外力有重力和支持力,合力为零,系统的动量守恒;子弹射入木块过程中,虽然子弹和木块之间的力很大,但这是内力,木块放在光滑水平面上,系统所受合力为零,动量守恒;子弹射入紧靠墙角的木块时,墙对木块有力的作用,系统所受合力不为零,系统的动量减小;斜向上抛出的手榴弹在空中炸开时,虽然受到重力作用,合力不为零,但爆炸的内力远大于重力,动量近似守恒。故选C。]
4.(人教版选修3-5P21T2改编)质量为m、速度为v的A球与质量为3m的静止的B球发生正碰。碰撞可能是弹性的,也可能是非弹性的,因此,碰撞后B球的速度可能有不同的值,碰撞后B球的速度大小可能是( )
A.0.6v B.0.4v
C.0.2v D.v
B [根据动量守恒定律得mv=mv1+3mv2,则当v2=0.6v时,v1=-0.8v,则碰撞后的总动能E′k=m(-0.8v)2+×3m(0.6v)2=1.72×mv2,大于碰撞前的总动能,违反了能量守恒定律,故A项错误;当v2=0.4v时,v1=-0.2v,则碰撞后的总动能为E′k=m(-0.2v)2+×3m(0.4v)2=0.52×mv2,小于碰撞前的总动能,故可能发生的是非弹性碰撞,B项正确;当v2=0.2v时,v1=0.4v,则碰撞后的A球的速度大于B球的速度,而两球碰撞,A球不可能穿透B球,故C项错误;当v2=v时,v1=-2v,显然碰撞后的总动能大于碰撞前的总动能,故D项错误。]
动量守恒定律的理解及应用
1.动量守恒定律的五个特性
矢量性
动量守恒定律的表达式为矢量方程,解题应选取统一的正方向
相对性
各物体的速度必须是相对同一参考系的速度(一般是相对于地面)
同时性
动量是一个瞬时量,表达式中的p1、p2、…必须是系统中各物体在相互作用前同一时刻的动量,p′1、p′2、…必须是系统中各物体在相互作用后同一时刻的动量
系统性
研究的对象是相互作用的两个或多个物体组成的系统
普适性
动量守恒定律不仅适用于低速宏观物体组成的系统,还适用于接近光速运动的微观粒子组成的系统
2.应用动量守恒定律的解题步骤
(1)明确研究对象,确定系统的组成(系统包括哪几个物体及研究的过程)。
(2)进行受力分析,判断系统动量是否守恒(或某一方向上是否守恒)。
(3)规定正方向,确定初、末状态动量。
(4)由动量守恒定律列出方程。
(5)代入数据,求出结果,必要时讨论说明。
(2019·郑州高三质量预测)如图所示,质量为m=245 g的物块(可视为质点)放在质量为M=0.5 kg的木板左端,足够长的木板静止在光滑水平面上,物块与木板间的动摩擦因数为μ=0.4。质量为m0=5 g的子弹以速度v0=300 m/s沿水平方向射入物块并留在其中(时间极短),g取10 m/s2。子弹射入后,求:
(1)子弹进入物块后子弹和物块一起向右滑行的最大速度v1;
(2)木板向右滑行的最大速度v2。
审题指导:
题干关键
获取信息
子弹进入物块后到一起向右滑行的时间极短
木板速度仍为零
足够长的木板
木板向右滑行的速度v2最大
[解析](1)子弹进入物块后一起向右滑行的初速度即为物块的最大速度,由动量守恒可得
m0v0=(m0+m)v1,解得v1=6 m/s。
(2)当子弹、物块、木板三者同速时,木板的速度最大,由动量守恒定律可得
(m0+m)v1=(m0+m+M)v2,
解得v2=2 m/s。
[答案](1)6 m/s (2)2 m/s
[拓展] 在上例中,物块在木板上滑行的时间t是多少?整个过程共损失了多少机械能?
[解析] 对物块和子弹组成的整体应用动量定理得
-μ(m0+m)gt=(m0+m)v2-(m0+m)v1
解得t=1 s
整个过程损失的机械能为
ΔE=m0v-(m0+m+M)v22=223.5 J。
[答案] 1 s 223.5 J
例题及相关延伸思考旨在让考生掌握动量守恒定律的适用条件及应用方法,会根据相关条件分析有关问题,如“人船模型”和临界极值问题。
人船模型
1.条件
(1)系统由两个物体组成且相互作用前静止,总动量为零。
(2)在相对运动过程中至少有一个方向动量守恒。
2.结论:m1s1+m2s2=0
(1)式中的s1和s2是两物体相对同一惯性参考系的位移(一般相对于地面),二者方向相反,一正一负。
(2)此结论与两物体相对运动的速度大小无关,其相对运动不论是匀速运动还是变速运动,甚至是往返运动,结论都是相同的。此结论跟相互作用力是恒力还是变力也无关。
1.(多选)(2019·安徽安庆五校联考)如图所示,光滑水平面上静止着一辆质量为M的小车,小车上带有一光滑的、半径为R的圆弧轨道。现有一质量为m的光滑小球从轨道的上端由静止开始释放,下列说法中正确的是( )
A.小球下滑过程中,小车和小球组成的系统总动量守恒
B.小球下滑过程中,小车和小球组成的系统总动量不守恒
C.小球下滑过程中,在水平方向上小车和小球组成的系统总动量守恒
D.小球下滑过程中,小车和小球组成的系统机械能守恒
BCD [小车和小球组成的系统在水平方向上所受的合外力为零,则水平方向上动量守恒,竖直方向所受合外力不为零,所以总的动量不守恒;除重力以外的其他外力不做功,小车和小球组成的系统机械能守恒,B、C、D正确。]
2.(2019·湛江联考)如图所示,质量均为m的小车和木箱紧挨着静止在光滑的水平冰面上,质量为2m的小孩站在小车上用力向右迅速推出木箱,木箱相对于冰面运动的速度为v,木箱运动到右侧墙壁时与竖直墙壁发生弹性碰撞,反弹后能被小孩接住,求:
(1)小孩接住木箱后共同速度的大小;
(2)若小孩接住箱子后再次以相对于冰面的速度v将木箱向右推出,木箱仍与竖直墙壁发生弹性碰撞,判断小孩能否再次接住木箱。
[解析](1)取向左为正方向,根据动量守恒定律可得
推出木箱的过程中0=(m+2m)v1-mv,
接住木箱的过程中mv+(m+2m)v1=(m+m+2m)v2。
解得v2=。
(2)若小孩第二次将木箱推出,根据动量守恒定律可得4mv2=3mv3-mv,则v3=v,故小孩无法再次接住木箱。
[答案](1) (2)不能
3.如图所示,甲、乙两船的总质量(包括船、人和货物)分别为10m、12m,两船沿同一直线同一方向运动,速度分别为2v0、v0。为避免两船相撞,乙船上的人将一质量为m的货物沿水平方向抛向甲船,甲船上的人将货物接住,求抛出货物的最小速度。(不计水的阻力和货物在两船之间的运动过程)
[解析] 设乙船上的人抛出货物的最小速度大小为vmin,抛出货物后乙船的速度为v乙。甲船上的人接到货物后甲船的速度为v甲,规定向右的方向为正方向。
对乙船和货物的作用过程,由动量守恒定律得
12mv0=11mv乙-mvmin ①
对货物和甲船的作用过程,同理有
10m×2v0-mvmin=11mv甲 ②
为避免两船相撞应有v甲=v乙 ③
联立①②③式得vmin=4v0。
[答案] 4v0
碰撞问题
1.碰撞现象三规律
2.弹性碰撞的结论
两球发生弹性碰撞时应满足动量守恒和机械能守恒。以质量为m1、速度为v1的小球与质量为m2的静止小球发生正面弹性碰撞为例,则有
m1v1=m1v′1+m2v′2
m1v=m1v′+m2v′
解得v′1=,v′2=
结论:(1)当m1=m2时,v′1=0,v′2=v1(质量相等,速度交换);
(2)当m1>m2时,v′1>0,v′2>0,且v′2>v′1(大碰小,一起跑);
(3)当m1
(4)当m1≫m2时,v′1=v1,v′2=2v1(极大碰极小,大不变,小加倍);
(5)当m1≪m2时,v′1=-v1,v′2=0(极小碰极大,小等速率反弹,大不变)。
(一题多变)如图所示,光滑水平轨道上放置长木板A(上表面粗糙)和滑块C,滑块B置于A的左端,三者质量分别为mA=2 kg,mB=1 kg,mC=2 kg。开始时C静止,A、B一起以v0=5 m/s的速度匀速向右运动,A与C发生碰撞(时间极短)后C向右运动,经过一段时间,A、B再次达到共同速度一起向右运动,且恰好不再与C碰撞。求A与C发生碰撞后瞬间A的速度大小。
审题指导:
题干关键
获取信息
A与C碰撞时间极短
系统A、C动量守恒
A、B再次同速,恰好不与C碰撞
最后三者同速
[解析] 长木板A与滑块C处于光滑水平轨道上,两者碰撞时间极短,碰撞过程中滑块B与长木板A间的摩擦力可以忽略不计,长木板A与滑块C组成的系统在碰撞过程中动量守恒,则mAv0=mAvA+mCvC。两者碰撞后,长木板A与滑块B组成的系统在两者达到同速之前所受合外力为零,系统动量守恒,则mAvA+mBv0=(mA+mB)v。长木板A和滑块B达到共同速度后,恰好不再与滑块C碰撞,则最后三者速度相等,vC=v。
联立以上各式,代入数据解得vA=2 m/s。
[答案] 2 m/s
[拓展] 在上例中(1)A与C发生碰撞后粘在一起,则三个物体最终的速度是多少?
(2)在相互作用的整个过程中,系统的机械能损失了多少?
[解析](1)整个作用过程中,A、B、C三个物体组成的系统动量守恒,最终三者具有相同的速度,根据动量守恒
(mA+mB)v0=(mA+mB+mC)v
代入数据可得v=3 m/s。
(2)三者最后的速度v=3 m/s
相互作用前E1=(mA+mB)v=37.5 J
A、B再次达到共同速度时
E2=(mA+mB+mC)v2=22.5 J
机械能损失ΔE=E1-E2=15 J。
[答案](1)3 m/s (2)15 J
碰撞问题解题三策略
(1)抓住碰撞的特点和不同种类碰撞满足的条件,列出相应方程求解。
(2)可熟记一些公式,例如“一动一静”模型中,两物体发生弹性正碰后的速度满足:
v′1=v1 v′2=v1
(3)熟记弹性正碰的一些结论,例如,当两球质量相等时,两球碰撞后交换速度。当m1≫m2,且v2=0时,碰后质量大的速率不变,质量小的速率为2v1。当m1≪m2,且v2=0时,碰后质量小的球原速率反弹。
1.(多选)(2019·银川模拟)A、B两球沿一直线运动并发生正碰,如图所示为两球碰撞前、后的位移随时间变化的图象,a、b分别为A、B两球碰前的位移随时间变化的图线,c为碰撞后两球共同运动的位移随时间变化的图线,若A球质量是m=2 kg,则由图象判断下列结论正确的是 ( )
A.碰撞前、后A球的动量变化量为4 kg·m/s
B.碰撞时A球对B球所施的冲量为-4 N·s
C.A、B两球碰撞前的总动量为3 kg·m/s
D.碰撞中A、B两球组成的系统损失的动能为10 J
ABD [根据题图可知,碰前A球的速度vA=-3 m/s,碰前B球的速度vB=2 m/s,碰后A、B两球共同的速度v=-1 m/s,故碰撞前、后A球的动量变化量为ΔpA=mv-mvA=4 kg·m/s,选项A正确;A球的动量变化量为4 kg·m/s,碰撞过程中动量守恒,B球的动量变化量为-4 kg·m/s,根据动量定理,碰撞过程中A球对B球所施的冲量为-4 N·s,选项B正确;由于碰撞过程中动量守恒,有mvA+mBvB=(m+mB)v,解得mB= kg,故碰撞过程中A、B两球组成的系统损失的动能为ΔEk=mv+mBv-(m+mB)v2=10 J,选项D正确;A、B两球碰撞前的总动量为p=mvA+mBvB=(m+mB)v=- kg·m/s,选项C错误。]
2.三个半径相同的弹性球,静止于光滑水平面的同一直线上,顺序如图所示,已知mA=m,mC=4m。当A以速度v0向B运动,若要使得B、C碰后C具有最大速度,则B的质量应为( )
A.m B.2m
C.3m D.4m
B [设B球的质量为M,以碰撞前A球的速度方向为正,A球与B球发生弹性碰撞,设碰撞后的速度分别为v1和v2,根据A球与B球动量守恒得mv0=mv1+Mv2,由能量守恒定律得mv=mv+Mv,解得v2=;B球与C球发生弹性碰撞,设碰撞后的速度分别为v′2和v3,由能量守恒定律得Mv=Mv′+×(4m)v,规定碰撞前A球的速度方向为正,由动量守恒定律得Mv2=Mv′2+4mv3,解得v3=,故C球碰撞后的速度为v3=·=,由数学关系解得M==2m时,B、C球碰撞后C球的速度最大。]
3.(2019·日照一模)A、B两小球静止在光滑水平面上,用轻弹簧相连接,A、B两球的质量分别为m和M(m
甲 乙
A.L1>L2 B.L1
C [当弹簧压缩到最短时,两球的速度相同,对甲图取A的初速度方向为正方向,由动量守恒定律得:mv=(M+m)v′,由机械能守恒定律得:Ep=mv2-(M+m)v′2,联立解得弹簧压缩到最短时有:Ep=。同理,对乙图取B的初速度方向为正方向,当弹簧压缩到最短时也有:Ep=,两次弹性势能相等,则有:L1=L2,故选项C正确。]
爆炸、反冲问题
爆炸问题
1.(多选)向空中发射一枚炮弹,不计空气阻力,当炮弹的速度v0恰好沿水平方向时,炮弹炸裂成a、b两块,若质量较大的a的速度方向仍沿原来的方向,则 ( )
A.b的速度方向一定与原来速度方向相反
B.从炸裂到落地的这段时间内,a飞行的水平距离一定比b的大
C.a、b一定同时到达水平地面
D.在炸裂过程中,a、b受到的爆炸力的大小一定相等
CD [炮弹炸裂前后动量守恒,选定v0的方向为正方向,则mv0=mava+mbvb,显然vb>0、vb<0、vb=0都有可能,A错误;vb>va、vb
(1)木块与水平地面间的动摩擦因数μ;
(2)炸药爆炸时释放的化学能。
[解析](1)从O滑到P,对A、B由动能定理得
-μ·2mgs=×2m-×2mv,
解得μ=。
(2)在P点爆炸时,A、B组成的系统动量守恒,有
2m·=mv,
根据能量守恒定律有
E0+×2m=mv2,
解得E0=mv。
[答案](1) (2)mv
爆炸现象的三个规律
动量守恒
由于爆炸是在极短的时间内完成的,爆炸物体间的相互作用力远远大于受到的外力,所以在爆炸过程中,系统的总动量守恒
动能增加
在爆炸过程中,由于有其他形式的能量(如化学能)转化为动能,所以爆炸后系统的总动能增加
位置不变
爆炸的时间极短,因而作用过程中,物体产生的位移很小,一般可忽略不计,可以认为爆炸后仍然从爆炸前的位置以新的动量开始运动
反冲问题
3.如图所示,质量为M的小船在静止水面上以速率v0向右匀速行驶,一质量为m的救生员站在船尾,相对小船静止。若救生员以相对水面速率v水平向左跃入水中,则救生员跃出后小船的速率为( )
A.v0+v B.v0-v
C.v0+(v0+v) D.v0+(v0-v)
C [以水面为参考系,根据动量守恒定律(M+m)v0=-mv+Mv1,可解得C正确。]
4.如图所示,一枚火箭搭载着卫星以速率v0进入太空预定位置,由控制系统使箭体与卫星分离。已知前部分的卫星质量为m1,后部分的箭体质量为m2,分离后箭体以速率v2沿火箭原方向飞行,若忽略空气阻力及分离前后系统质量的变化,则分离后卫星的速率v1为( )
A.v0-v2 B.v0+v2
C.v0-v2 D.v0+(v0-v2)
D [火箭和卫星组成的系统,在分离前后沿原运动方向上动量守恒,由动量守恒定律有:(m1+m2)v0=m1v1+m2v2,解得:v1=v0+(v0-v2),D项正确。]
对反冲运动的三点说明
作用原理
反冲运动是系统内物体之间的作用力和反作用力产生的效果
动量守恒
反冲运动中系统不受外力或内力远大于外力,所以反冲运动遵循动量守恒定律
机械能增加
反冲运动中,由于有其他形式的能转化为机械能,所以系统的总机械能增加
动量和能量观点的综合应用
“滑块——弹簧”模型
如图所示,A、B、C三个木块的质量均为m,置于光滑的水平面上,B、C之间有一轻质弹簧,弹簧的两端与木块接触可不固连,将弹簧压紧到不能再压缩时用细线把B、C紧连,使弹簧不能伸展,以至于B、C可视为一个整体。现A以初速度v0沿B、C的连线方向朝B运动,与B相碰并黏合在一起。以后细线突然断开,弹簧伸展,从而使C与A、B分离。已知C离开弹簧后的速度恰为v0,求弹簧释放的势能。
思路点拨:解此题要注意以下关键信息:
(1)“B、C可视为一个整体”表明A与B碰后,三者共速。
(2)“A与B碰后黏在一起”表明C离开弹簧时,A、B有共同的速度。
[解析] 设碰后A、B和C共同速度的大小为v,由动量守恒定律得
3mv=mv0 ①
设C离开弹簧时,A、B的速度大小为v1,由动量守恒定律得
3mv=2mv1+mv0 ②
设弹簧的弹性势能为Ep,从细线断开到C与弹簧分开的过程中机械能守恒,有
(3m)v2+Ep=(2m)v+mv ③
由①②③式得弹簧所释放的势能为Ep=mv。
[答案] mv
“滑块——弹簧”模型的几点注意
对两个(或两个以上)物体与弹簧组成的系统在相互作用的过程中,要关注以下四点
(1)在能量方面,由于弹簧的形变会具有弹性势能,系统的总动能将发生变化,若系统所受的外力和除弹簧弹力以外的内力不做功,系统机械能守恒。
(2)在动量方面,系统动量守恒。
(3)弹簧处于最长(最短)状态时两物体速度相等,弹性势能最大,系统动量守恒,机械能守恒。
(4)弹簧处于原长时,弹性势能为零。
1.如图所示,放在光滑水平桌面上的A、B两小木块中部夹一被压缩的轻弹簧,当轻弹簧被放开时,A、B两小木块各自在桌面上滑行一段距离后,飞离桌面落在地面上。若mA=3mB,则下列结果正确的是( )
A.若轻弹簧对A、B做功分别为W1和W2,则有W1∶W2=1∶1
B.在与轻弹簧作用过程中,两木块的速度变化量之和为零
C.若A、B在空中飞行时的动量变化量分别为Δp1和Δp2,则有Δp1∶Δp2=1∶1
D.若A、B同时离开桌面,则从释放轻弹簧开始到两木块落地的这段时间内,A、B两木块的水平位移大小之比为1∶3
D [弹簧弹开木块过程中,两木块及弹簧组成的系统动量守恒,取水平向左为正方向,由动量守恒定律得mAvA-mBvB=0,则速度之比vA∶vB=1∶3,根据动能定理得:轻弹簧对A、B做功分别为W1=mAv,W2=mBv,联立解得W1∶W2=1∶3,选项A错误;根据动量守恒定律得知,在与轻弹簧作用过程中,两木块的动量变化量之和为零,即mAΔvA+mBΔvB=0,可得,ΔvA+ΔvB≠0,选项B错误;A、B离开桌面后都做平抛运动,它们抛出点的高度相同,运动时间相等,设为t,由动量定理得A、B在空中飞行时的动量变化量分别为Δp1=mAgt,Δp2=mBgt,所以Δp1∶Δp2=3∶1,选项C错误;平抛运动水平方向的分运动是匀速直线运动,由x=v0t知,t相等,则A、B两木块的水平位移大小之比等于vA∶vB=1∶3,选项D正确。]
2.如图所示,质量为m2=2 kg和m3=3 kg的物体静止放在光滑水平面上,两者之间有压缩着的轻弹簧(与m2、m3不拴接)。质量为m1=1 kg的物体以速度v0=9 m/s向右冲来,为防止冲撞,释放弹簧将m3物体发射出去,m3与m1碰撞后粘合在一起。试求:
(1)m3的速度至少为多大,才能使以后m3和m2不发生碰撞?
(2)为保证m3和m2恰好不发生碰撞,弹簧的弹性势能至少为多大?
[解析](1)设m3发射出去的速度为v1,m2的速度为v2,以向右的方向为正方向,对m2、m3,由动量守恒定律得
m2v2-m3v1=0。
只要m1和m3碰后速度不大于v2,则m3和m2就不会再发生碰撞,m3和m2恰好不相撞时,两者速度相等。
对m1、m3,由动量守恒定律得
m1v0-m3v1=(m1+m3)v2
解得v1=1 m/s,即弹簧将m3发射出去的速度至少为1 m/s。
(2)对m2、m3及弹簧组成的系统,由机械能守恒定律得
Ep=m3v+m2v=3.75 J。
[答案](1)1 m/s (2)3.75 J
“滑块——平板”模型
(2019·黄山模拟)如图所示,质量m1=4.0 kg的小车静止在光滑的水平面上,车长L=1.5 m,现有质量m2=1.0 kg可视为质点的物块,以水平向右的速度v0=5 m/s从左端滑上小车,最后在车面上某处与小车保持相对静止。物块与车面间的动摩擦因数μ=0.5,g取10 m/s2。求:
(1)物块在车面上滑行的时间t;
(2)要使物块不从小车右端滑出,物块滑上小车左端的速度v′0不超过多少。
审题指导:
题干关键
获取信息
相对静止
最后共速
要使物块不从小车右端滑出
物块滑到车右端与小车共速
[解析](1)设物块与小车的共同速度为v,以水平向右为正方向,根据动量守恒定律有m2v0=(m1+m2)v,
设物块与车面间的滑动摩擦力为f,对物块应用动量定理有-ft=m2v-m2v0,
其中f=μm2g,
联立以上三式解得t=
代入数据得t= s=0.8 s。
(2)要使物块恰好不从小车右端滑出,物块滑到车面右端时与小车有共同的速度v′,则有
m2v′0=(m1+m2)v′,
由功能关系有
m2v′=(m1+m2)v′2+μm2gL,
代入数据解得v′0= m/s。
故要使物块不从小车右端滑出,物块滑上小车左端的速度v′0不能超过 m/s。
[答案](1)0.8 s (2) m/s
[拓展] 在上例中若改为小车右端连一个四分之一光滑圆弧轨道,其总质量仍为m1,小车水平部分长度仍为L,圆弧轨道与小车水平面在点O′相切,如图所示。物块仍以v0=5 m/s的速度从左端滑上小车,物块恰能到达圆弧轨道的最高点A,求:
(1)光滑圆弧轨道的半径;
(2)物块与小车最终相对静止时,它距点O′的距离。
[解析](1)小车和物块组成的系统水平方向动量守恒,设物块到达圆弧轨道最高点A时,二者的共同速度为v1,
由动量守恒得m2v0=(m1+m2)v1,
由能量守恒得m2v-(m1+m2)v=m2gR+μm2gL,
联立并代入数据解得R=0.25 m。
(2)设物块最终与车相对静止时,二者的共同速度为v2,从物块滑上小车,到二者相对静止的过程中,由动量守恒得m2v0=(m1+m2)v2,
设物块与车最终相对静止时,它距O′点的距离为x,由能量守恒得m2v-(m1+m2)v=μm2g(L+x),
联立并代入数据解得x=0.5 m。
[答案](1)0.25 m (2)0.5 m
“滑块——木板”模型的三大特点
(1)当滑块和木板的速度相等时木板的速度最大,两者的相对位移取得极值。
(2)系统的动量守恒,但系统的机械能不守恒,摩擦力与两者相对位移的乘积等于系统机械能的减少量,当两者的速度相等时,系统机械能损失最大。
(3)解决该类问题,既可以从动量、能量两方面解题,也可以从力和运动的角度借助图象求解。
3.(2019·陕西汉中中学月考)如图所示,质量为M、长为L的长木板放在光滑水平面上,一个质量也为M的物块(可视为质点)以一定的初速度从左端冲上木板,如果长木板是固定的,物块恰好停在木板的右端,如果长木板不固定,则物块冲上木板后在木板上滑行的距离为( )
A.L B.
C. D.
C [设物块受到的滑动摩擦力为f,物块的初速度为v0。如果长木板是固定的,物块恰好停在木板的右端,对小滑块的滑动过程运用动能定理得-fL=0-Mv,如果长木板不固定,物块冲上木板后,物块向右减速的同时,木板要加速,最终两者一起做匀速运动,该过程系统所受外力的合力为零,动量守恒,规定向右为正方向,根据动量守恒定律得Mv0=(M+M)v1,对系统运用能量守恒定律有fL′=Mv-(2M)v,联立解得L′=,故C正确,A、B、D错误。]
4.(2019·济宁一模)如图所示,质量为M=2 kg的木板A静止在光滑水平面上,其左端与固定台阶相距x,右端与一固定在地面上的半径R=0.4 m的光滑四分之一圆弧紧靠在一起,圆弧的底端与木板上表面水平相切。质量为m=1 kg的滑块B(可视为质点)以初速度v0= m/s从圆弧的顶端沿圆弧下滑,B从A右端的上表面水平滑入时撤走圆弧。A与台阶碰撞无机械能损失,不计空气阻力,A、B之间动摩擦因数μ=0.1,A足够长,B不会从A表面滑出,取g=10 m/s2。
(1)求滑块B到圆弧底端时的速度大小v1;
(2)若A与台阶碰前,已和B达到共速,求A向左运动的过程中与B摩擦产生的热量Q(结果保留两位有效数字);
(3)若A与台阶只发生一次碰撞,求x满足的条件。
[解析](1)滑块B从释放到最低点,由动能定理得
mgR=mv-mv
解得v1=4 m/s。
(2)向左运动过程中,由动量守恒定律得
mv1=(m+M)v2
解得v2= m/s
由能量守恒定律得Q=mv-(m+M)v
解得Q=5.3 J。
(3)从B刚滑到A上到A左端与台阶碰撞前瞬间,由动量守恒定律得mv1=mv3+Mv4
若A与台阶只发生一次碰撞,碰后需满足
mv3≤Mv4
对A板,由动能定理得μmgx=Mv-0
联立解得x≥1 m。
[答案](1)4 m/s (2)5.3 J (3)x≥1 m
[示例] (20分)如图所示,在光滑水平桌面EAB上有质量为M=0.2 kg的小球P和质量为m=0.1 kg的小球Q,P、Q之间压缩一轻弹簧(轻弹簧与两小球不拴接),桌面边缘E处放置一质量也为m=0.1 kg的橡皮泥球S,在B处固定一与水平桌面相切的光滑竖直半圆形轨道。释放被压缩的轻弹簧,P、Q两小球被轻弹簧弹出,小球P与弹簧分离后进入半圆形轨道,恰好能够通过半圆形轨道的最高点C;小球Q与弹簧分离后与桌面边缘的橡皮泥球S碰撞后合为一体飞出,落在水平地面上的D点。已知水平桌面高为h=0.2 m,D点到桌面边缘的水平距离为x=0.2 m,重力加速度为g=10 m/s2,求:
(1)小球P经过半圆形轨道最低点B时对轨道的压力大小F′NB;
(2)小球Q与橡皮泥球S碰撞前瞬间的速度大小vQ;
(3)被压缩的轻弹簧的弹性势能Ep。
审题破题:(1)“P、Q两小球被轻弹簧弹出”动量守恒定律和能量守恒定律。
(2)“小球P……恰好能够通过半圆形轨道的最高点C”Mg=。
(3)“小球Q……球S碰撞后为一体”动量守恒定律。
(4)“小球Q……一体飞出”二者一起做平抛运动。
[规律解答](1)小球P恰好能通过半圆形轨道的最高点C,则有Mg=M (1分)
解得vC= (1分)
对于小球P,从B→C,
由动能定理有-2MgR=Mv-Mv (2分)
解得vB= (1分)
在B点有FNB-Mg=M (2分)
解得FNB=6Mg=12 N (1分)
由牛顿第三定律有F′NB=FNB=12 N。 (1分)
(2)设Q与S做平抛运动的初速度大小为v,所用时间为t,
根据公式h=gt2得
t=0.2 s (1分)
根据公式x=vt,得v=1 m/s (1分)
碰撞前后Q和S组成的系统动量守恒,则有
mvQ=2mv (2分)
解得vQ=2 m/s。 (1分)
(3)P、Q和弹簧组成的系统动量守恒,则有MvP=mvQ (2分)
解得vP=1 m/s (1分)
P、Q和弹簧组成的系统,由能量守恒定律有
Ep=Mv+mv (2分)
解得Ep=0.3 J。 (1分)
[答案](1)12 N (2)2 m/s (3)0.3 J
规范解答“四部曲”
1.文字说明规范
文字说明要用规范的物理语言和符号。对题干中未出现的字母进行说明时,字母书写要规范。设定所求的物理量或解题过程中用到的中间变量,可表述为设……,令……等。
2.列方程规范
列方程时要做到“三要三不要”。
一是要写出方程式而不要堆砌公式;
二是要原始式而不是变形式;
三是要分步列式,不要用连等式。
3.演算过程规范
要写出主要演算过程,有必要的关联词。一般表述为:将……代入……,由……式可得等。
4.结果表达规范
对题中所求得物理量应有明确的回答,要写出最后结果的单位。答案中不能含有未知量和中间量。
[即时训练]
(2019·潍坊二模)如图所示,一质量M=4 kg的小车静置于光滑水平地面上,左侧用固定在地面上的销钉挡住。小车上表面由光滑圆弧轨道BC和水平粗糙轨道CD组成,BC与CD相切于C,BC所对圆心角θ=37°,CD长L=3 m。质量m=1 kg的小物块从某一高度处的A点以v0=4 m/s的速度水平抛出,恰好沿切线方向自B点进入圆弧轨道,滑到D点时刚好与小车达到共同速度v=1.2 m/s。取g=10 m/s2,sin 37°=0.6,忽略空气阻力。
(1)求A、B间的水平距离x;
(2)求小物块从C滑到D所用时间t0;
(3)若在小物块抛出时拔掉销钉,求小车向左运动到最大位移时滑块离小车左端的水平距离。
[解析](1)由平抛运动的规律得
tan θ= (2分)
x=v0t (2分)
解得x=1.2 m。 (2分)
(2)物块在小车上CD段滑动过程中,由动量守恒定律得
mv1=(M+m)v (2分)
由功能关系得
fL=mv-(M+m)v2 (2分)
对物块,由动量定理得
-ft0=mv-mv1 (2分)
得t0=1 s。 (1分)
(3)有销钉时
mgH+mv=mv (1分)
由几何关系得
H-gt2=R(1-cos θ)
B、C间水平距离xBC=Rsin θ (1分)
μmgL=mv-(M+m)v2(或f=μmg) (1分)
若拔掉销钉,小车向左运动达最大位移时,速度为0,由系统水平方向动量守恒可知,此时物块速度为4 m/s (1分)
由能量守恒定律得mgH=μmg(Δx-xBC) (1分)
解得Δx=3.73 m。 (1分)
[答案](1)1.2 m (2)1 s (3)3.73 m
21
相关资料
更多