![2019-2020学年中考备考专题复习《中考数学考点》 分层专题28 —— 锐角三角函数 —— 拔高(无答案)01](http://img-preview.51jiaoxi.com/2/3/5603606/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2019-2020学年中考备考专题复习《中考数学考点》 分层专题28 —— 锐角三角函数 —— 拔高(无答案)02](http://img-preview.51jiaoxi.com/2/3/5603606/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2019-2020学年中考备考专题复习《中考数学考点》 分层专题28 —— 锐角三角函数 —— 拔高(无答案)03](http://img-preview.51jiaoxi.com/2/3/5603606/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2019-2020学年中考备考专题复习《中考数学考点》 分层专题28 —— 锐角三角函数 —— 拔高(无答案)
展开锐角三角函数
分层——拔高
1.(2019•长沙)如图,一艘轮船从位于灯塔C的北偏东60°方向,距离灯塔60nmile的小岛A出发,沿正南方向航行一段时间后,到达位于灯塔C的南偏东45°方向上的B处,这时轮船B与小岛A的距离是( )
A.30nmile B.60nmile
C.120nmile D.(30+30)nmile
2.(2019•杭州)如图,一块矩形木板ABCD斜靠在墙边(OC⊥OB,点A,B,C,D,O在同一平面内),已知AB=a,AD=b,∠BCO=x,则点A到OC的距离等于( )
A.asinx+bsinx B.acosx+bcosx
C.asinx+bcosx D.acosx+bsinx
3.(2019•温州)某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AB的长为( )
A.米 B.米
C.米 D.米
4.(2019•凉山州)如图,在△ABC中,CA=CB=4,cosC=,则sinB的值为( )
A. B.
C. D.
5.(2019•重庆)如图,AB是垂直于水平面的建筑物.为测量AB的高度,小红从建筑物底端B点出发,沿水平方向行走了52米到达点C,然后沿斜坡CD前进,到达坡顶D点处,DC=BC.在点D处放置测角仪,测角仪支架DE高度为0.8米,在E点处测得建筑物顶端A点的仰角∠AEF为27°(点A,B,C,D,E在同一平面内).斜坡CD的坡度(或坡比)i=1:2.4,那么建筑物AB的高度约为( )
(参考数据sin27°≈0.45,cos27°≈0.89,tan27°≈0.51)
A.65.8米 B.71.8米
C.73.8米 D.119.8米
6.(2019•重庆)为践行“绿水青山就是金山银山”的重要思想,某森林保护区开展了寻找古树活动.如图,在一个坡度(或坡比)i=1:2.4的山坡AB上发现有一棵古树CD.测得古树底端C到山脚点A的距离AC=26米,在距山脚点A水平距离6米的点E处,测得古树顶端D的仰角∠AED=48°(古树CD与山坡AB的剖面、点E在同一平面上,古树CD与直线AE垂直),则古树CD的高度约为( )
(参考数据:sin48°≈0.73,cos48°≈0.67,tan48°≈1.11)
A.17.0米 B.21.9米
C.23.3米 D.33.3米
7.(2019•泰安)如图,一艘船由A港沿北偏东65°方向航行30km至B港,然后再沿北偏西40°方向航行至C港,C港在A港北偏东20°方向,则A,C两港之间的距离为( )km.
A.30+30 B.30+10
C.10+30 D.30
8.(2019•自贡)如图,已知A、B两点的坐标分别为(8,0)、(0,8),点C、F分别是直线x=﹣5和x轴上的动点,CF=10,点D是线段CF的中点,连接AD交y轴于点E,当△ABE面积取得最小值时,tan∠BAD的值是( )
A. B.
C. D.
9.(2020•江岸区校级模拟)如图,点A、B、E在同一直线上,∠FEB=∠ACB=90°,AC=BC,EB=EF,连AF,CE交于点H,AF、CB交于点D,若tan∠CAD=,则=( )
A. B.
C. D.
10.(2019•浦东新区一模)如图,一架飞机在点A处测得水平地面上一个标志物P的俯角为α,水平飞行m千米后到达点B处,又测得标志物P的俯角为β,那么此时飞机离地面的高度为( )
A.千米 B.千米
C.千米 D.千米
11.(2019•徐州)如图,无人机于空中A处测得某建筑顶部B处的仰角为45°,测得该建筑底部C处的俯角为17°.若无人机的飞行高度AD为62m,则该建筑的高度BC为 m.
(参考数据:sin17°≈0.29,cos17°≈0.96,tan17°≈0.31)
12.(2019•柳州)如图,在△ABC中,sinB=,tanC=,AB=3,则AC的长为 .
13.(2019•孝感)如图,在P处利用测角仪测得某建筑物AB的顶端B点的仰角为60°,点C的仰角为45°,点P到建筑物的距离为PD=20米,则BC= 米.
14.(2019•咸宁)如图所示,九(1)班数学课外活动小组在河边测量河宽AB(这段河流的两岸平行),他们在点C测得∠ACB=30°,点D处测得∠ADB=60°,CD=80m,则河宽AB约为 m(结果保留整数,≈1.73).
15.(2019•荆州)如图,灯塔A在测绘船的正北方向,灯塔B在测绘船的东北方向,测绘船向正东方向航行20海里后,恰好在灯塔B的正南方向,此时测得灯塔A在测绘船北偏西63.5°的方向上,则灯塔A,B间的距离为 海里(结果保留整数).(参考数据sin26.5°≈0.45,cos26.5°≈0.90,tan26.5°≈0.50,≈2.24)
16.(2019•铁岭)如图,聪聪想在自己家的窗口A处测量对面建筑物CD的高度,他首先量出窗口A到地面的距离(AB)为16m,又测得从A处看建筑物底部C的俯角α为30°,看建筑物顶部D的仰角β为53°,且AB,CD都与地面垂直,点A,B,C,D在同一平面内.
(1)求AB与CD之间的距离(结果保留根号).
(2)求建筑物CD的高度(结果精确到1m).
(参考数据:sin53°≈0.8,cos53°≈0.6,tan53≈1.3,≈1.7)
17.(2019•丹东)如图,在某街道路边有相距10m、高度相同的两盏路灯(灯杆垂直地面),小明为了测量路灯的高度,在地面A处测得路灯PQ的顶端仰角为14°,向前行走25m到达B处,在地面测得路灯MN的顶端仰角为24.3°,已知点A,B,Q,N在同一条直线上,请你利用所学知识帮助小明求出路灯的高度.(结果精确到0.1m.参考数据:sin14°≈0.24,cos14°≈0.97,tan14°≈0.25,sin24.3°≈0.41,cos24.3°≈0.91,tan24.3°≈0.45)
18.(2019•莱芜区)公园内一凉亭,凉亭顶部是一圆锥形的顶盖,立柱垂直于地面,在凉亭内中央位置有一圆形石桌,某数学研究性学习小组,将此凉亭作为研究对象,并绘制截面示意图,其中顶盖母线AB与AC的夹角为124°,凉亭顶盖边缘B、C到地面的距离为2.4米,石桌的高度DE为0.6米,经观测发现:当太阳光线与地面的夹角为42°时,恰好能够照到石桌的中央E处(A、E、D三点在一条直线上),请你求出圆锥形顶盖母线AB的长度.(结果精确到0.1m)(参考数据:sin62°≈0.88,tan42°≈0.90)
19.(2019•遵义)某地为打造宜游环境,对旅游道路进行改造.如图是风景秀美的观景山,从山脚B到山腰D沿斜坡已建成步行道,为方便游客登顶观景,欲从D到A修建电动扶梯,经测量,山高AC=154米,步行道BD=168米,∠DBC=30°,在D处测得山顶A的仰角为45°.求电动扶梯DA的长(结果保留根号).
20.(2019•锦州)如图,某学校体育场看台的顶端C到地面的垂直距离CD为2m,看台所在斜坡CM的坡比i=1:3,在点C处测得旗杆顶点A的仰角为30°,在点M处测得旗杆顶点A的仰角为60°,且B,M,D三点在同一水平线上,求旗杆AB的高度.(结果精确到0.1m,参考数据:≈1.41,=1.73)