


2018年浙江省宁波市中考数学试卷
展开
中考真题
2018年浙江省宁波市中考数学试卷
一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求)
1.(4.00分)(2018•宁波)在﹣3,﹣1,0,1这四个数中,最小的数是( )
A.﹣3 B.﹣1 C.0 D.1
2.(4.00分)(2018•宁波)2018中国(宁波)特色文化产业博览会于4月16日在宁波国际会展中心闭幕.本次博览会为期四天,参观总人数超55万人次,其中55万用科学记数法表示为( )
A.0.55×106 B.5.5×105 C.5.5×104 D.55×104
3.(4.00分)(2018•宁波)下列计算正确的是( )
A.a3+a3=2a3 B.a3•a2=a6 C.a6÷a2=a3 D.(a3)2=a5
4.(4.00分)(2018•宁波)有五张背面完全相同的卡片,正面分别写有数字1,2,3,4,5,把这些卡片背面朝上洗匀后,从中随机抽取一张,其正面的数字是偶数的概率为( )
A. B. C. D.
5.(4.00分)(2018•宁波)已知正多边形的一个外角等于40°,那么这个正多边形的边数为( )
A.6 B.7 C.8 D.9
6.(4.00分)(2018•宁波)如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是( )
A.主视图 B.左视图
C.俯视图 D.主视图和左视图
7.(4.00分)(2018•宁波)如图,在▱ABCD中,对角线AC与BD相交于点O,E是边CD的中点,连结OE.若∠ABC=60°,∠BAC=80°,则∠1的度数为( )
A.50° B.40° C.30° D.20°
8.(4.00分)(2018•宁波)若一组数据4,1,7,x,5的平均数为4,则这组数据的中位数为( )
A.7 B.5 C.4 D.3
9.(4.00分)(2018•宁波)如图,在△ABC中,∠ACB=90°,∠A=30°,AB=4,以点B为圆心,BC长为半径画弧,交边AB于点D,则的长为( )
A.π B.π C.π D.π
10.(4.00分)(2018•宁波)如图,平行于x轴的直线与函数y=(k1>0,x>0),y=(k2>0,x>0)的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点,若△ABC的面积为4,则k1﹣k2的值为( )
A.8 B.﹣8 C.4 D.﹣4
11.(4.00分)(2018•宁波)如图,二次函数y=ax2+bx的图象开口向下,且经过第三象限的点P.若点P的横坐标为﹣1,则一次函数y=(a﹣b)x+b的图象大致是( )
A. B. C. D.
12.(4.00分)(2018•宁波)在矩形ABCD内,将两张边长分别为a和b(a>b)的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S1,图2中阴影部分的面积为S2.当AD﹣AB=2时,S2﹣S1的值为( )
A.2a B.2b C.2a﹣2b D.﹣2b
二、填空题(每小题4分,共24分)
13.(4.00分)(2018•宁波)计算:|﹣2018|= .
14.(4.00分)(2018•宁波)要使分式有意义,x的取值应满足 .
15.(4.00分)(2018•宁波)已知x,y满足方程组,则x2﹣4y2的值为 .
16.(4.00分)(2018•宁波)如图,某高速公路建设中需要测量某条江的宽度AB,飞机上的测量人员在C处测得A,B两点的俯角分别为45°和30°.若飞机离地面的高度CH为1200米,且点H,A,B在同一水平直线上,则这条江的宽度AB为 米(结果保留根号).
17.(4.00分)(2018•宁波)如图,正方形ABCD的边长为8,M是AB的中点,P是BC边上的动点,连结PM,以点P为圆心,PM长为半径作⊙P.当⊙P与正方形ABCD的边相切时,BP的长为 .
18.(4.00分)(2018•宁波)如图,在菱形ABCD中,AB=2,∠B是锐角,AE⊥BC于点E,M是AB的中点,连结
MD,ME.若∠EMD=90°,则cosB的值为 .
三、解答题(本大题有8小题,共78分)
19.(6.00分)(2018•宁波)先化简,再求值:(x﹣1)2+x(3﹣x),其中x=﹣.
20.(8.00分)(2018•宁波)在5×3的方格纸中,△ABC的三个顶点都在格点上.
(1)在图1中画出线段BD,使BD∥AC,其中D是格点;
(2)在图2中画出线段BE,使BE⊥AC,其中E是格点.
21.(8.00分)(2018•宁波)在第23个世界读书日前夕,我市某中学为了解本校学生的每周课外阅读时间(用t表示,单位:小时),采用随机抽样的方法进行问卷调查,调查结果按0≤t<2,2≤t<3,3≤t<4,t≥4分为四个等级,并依次用A,B,C,D表示,根据调查结果统计的数据,绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:
(1)求本次调查的学生人数;
(2)求扇形统计图中等级B所在扇形的圆心角度数,并把条形统计图补充完整;
(3)若该校共有学生1200人,试估计每周课外阅读时间满足3≤t<4的人数.
22.(10.00分)(2018•宁波)已知抛物线y=﹣x2+bx+c经过点(1,0),(0,).
(1)求该抛物线的函数表达式;
(2)将抛物线y=﹣x2+bx+c平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的函数表达式.
23.(10.00分)(2018•宁波)如图,在△ABC中,∠ACB=90°,AC=BC,D是AB边上一点(点D与A,B不重合),连结CD,将线段CD绕点C按逆时针方向旋转90°得到线段CE,连结DE交BC于点F,连接BE.
(1)求证:△ACD≌△BCE;
(2)当AD=BF时,求∠BEF的度数.
24.(10.00分)(2018•宁波)某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.
(1)求甲、乙两种商品的每件进价;
(2)该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变.要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?
25.(12.00分)(2018•宁波)若一个三角形一条边的平方等于另两条边的乘积,我们把这个三角形叫做比例三角形.
(1)已知△ABC是比例三角形,AB=2,BC=3,请直接写出所有满足条件的AC的长;
(2)如图1,在四边形ABCD中,AD∥BC,对角线BD平分∠ABC,∠BAC=∠ADC.求证:△ABC是比例三角形.
(3)如图2,在(2)的条件下,当∠ADC=90°时,求的值.
26.(14.00分)(2018•宁波)如图1,直线l:y=﹣x+b与x轴交于点A(4,0),与y轴交于点B,点C是线段OA上一动点(0<AC<).以点A为圆心,AC长为半径作⊙A交x轴于另一点D,交线段AB于点E,连结OE并延长交⊙A于点F.
(1)求直线l的函数表达式和tan∠BAO的值;
(2)如图2,连结CE,当CE=EF时,
①求证:△OCE∽△OEA;
②求点E的坐标;
(3)当点C在线段OA上运动时,求OE•EF的最大值.
2018年浙江省宁波市中考数学试卷
参考答案与试题解析
一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求)
1.(4.00分)(2018•宁波)在﹣3,﹣1,0,1这四个数中,最小的数是( )
A.﹣3 B.﹣1 C.0 D.1
【考点】18:有理数大小比较.菁优网版权所有
【专题】511:实数.
【分析】根据正数大于零,零大于负数,可得答案.
【解答】解:由正数大于零,零大于负数,得
﹣3<﹣1<0<1,
最小的数是﹣3,
故选:A.
【点评】本题考查了有理数比较大小,利用正数大于零,零大于负数是解题关键.
2.(4.00分)(2018•宁波)2018中国(宁波)特色文化产业博览会于4月16日在宁波国际会展中心闭幕.本次博览会为期四天,参观总人数超55万人次,其中55万用科学记数法表示为( )
A.0.55×106 B.5.5×105 C.5.5×104 D.55×104
【考点】1I:科学记数法—表示较大的数.菁优网版权所有
【专题】511:实数.
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【解答】解:550000=5.5×105,
故选:B.
【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
3.(4.00分)(2018•宁波)下列计算正确的是( )
A.a3+a3=2a3 B.a3•a2=a6 C.a6÷a2=a3 D.(a3)2=a5
【考点】35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方;48:同底数幂的除法.菁优网版权所有
【专题】17 :推理填空题.
【分析】根据同底数幂的除法法则,同底数幂的乘法的运算方法,合并同类项的方法,以及幂的乘方与积的乘方的运算方法,逐项判定即可.
【解答】解:∵a3+a3=2a3,
∴选项A符合题意;
∵a3•a2=a5,
∴选项B不符合题意;
∵a6÷a2=a4,
∴选项C不符合题意;
∵(a3)2=a6,
∴选项D不符合题意.
故选:A.
【点评】此题主要考查了同底数幂的除法法则,同底数幂的乘法的运算方法,合并同类项的方法,以及幂的乘方与积的乘方的运算方法,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.
4.(4.00分)(2018•宁波)有五张背面完全相同的卡片,正面分别写有数字1,2,3,4,5,把这些卡片背面朝上洗匀后,从中随机抽取一张,其正面的数字是偶数的概率为( )
A. B. C. D.
【考点】X4:概率公式.菁优网版权所有
【专题】11 :计算题;543:概率及其应用.
【分析】让正面的数字是偶数的情况数除以总情况数5即为所求的概率.
【解答】解:∵从写有数字1,2,3,4,5这5张纸牌中抽取一张,其中正面数字是偶数的有2、4这2种结果,
∴正面的数字是偶数的概率为,
故选:C.
【点评】此题主要考查了概率公式的应用,明确概率的意义是解答的关键,用到的知识点为:概率等于所求情况数与总情况数之比.
5.(4.00分)(2018•宁波)已知正多边形的一个外角等于40°,那么这个正多边形的边数为( )
A.6 B.7 C.8 D.9
【考点】L3:多边形内角与外角.菁优网版权所有
【专题】551:线段、角、相交线与平行线.
【分析】根据正多边形的外角和以及一个外角的度数,求得边数.
【解答】解:正多边形的一个外角等于40°,且外角和为360°,
则这个正多边形的边数是:360°÷40°=9.
故选:D.
【点评】本题主要考查了多边形的外角和定理,解决问题的关键是掌握多边形的外角和等于360度.
6.(4.00分)(2018•宁波)如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是( )
A.主视图 B.左视图
C.俯视图 D.主视图和左视图
【考点】R5:中心对称图形;U2:简单组合体的三视图.菁优网版权所有
【专题】55F:投影与视图.
【分析】根据从上边看得到的图形是俯视图,可得答案.
【解答】解:从上边看是一个田字,
“田”字是中心对称图形,
故选:C.
【点评】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图,又利用了中心对称图形.
7.(4.00分)(2018•宁波)如图,在▱ABCD中,对角线AC与BD相交于点O,E是边CD的中点,连结OE.若∠ABC=60°,∠BAC=80°,则∠1的度数为( )
A.50° B.40° C.30° D.20°
【考点】KX:三角形中位线定理;L5:平行四边形的性质.菁优网版权所有
【专题】1 :常规题型.
【分析】直接利用三角形内角和定理得出∠BCA的度数,再利用三角形中位线定理结合平行线的性质得出答案.
【解答】解:∵∠ABC=60°,∠BAC=80°,
∴∠BCA=180°﹣60°﹣80°=40°,
∵对角线AC与BD相交于点O,E是边CD的中点,
∴EO是△DBC的中位线,
∴EO∥BC,
∴∠1=∠ACB=40°.
故选:B.
【点评】此题主要考查了三角形内角和定理、三角形中位线定理等知识,得出EO是△DBC的中位线是解题关键.
8.(4.00分)(2018•宁波)若一组数据4,1,7,x,5的平均数为4,则这组数据的中位数为( )
A.7 B.5 C.4 D.3
【考点】W1:算术平均数;W4:中位数.菁优网版权所有
【专题】11 :计算题;542:统计的应用.
【分析】先根据平均数为4求出x的值,然后根据中位数的概念求解.
【解答】解:∵数据4,1,7,x,5的平均数为4,
∴=4,
解得:x=3,
则将数据重新排列为1、3、4、5、7,
所以这组数据的中位数为4,
故选:C.
【点评】本题考查了中位数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
9.(4.00分)(2018•宁波)如图,在△ABC中,∠ACB=90°,∠A=30°,AB=4,以点B为圆心,BC长为半径画弧,交边AB于点D,则的长为( )
A.π B.π C.π D.π
【考点】KO:含30度角的直角三角形;MN:弧长的计算.菁优网版权所有
【专题】55C:与圆有关的计算.
【分析】先根据ACB=90°,AB=4,∠A=30°,得圆心角和半径的长,再根据弧长公式可得到弧CD的长.
【解答】解:∵∠ACB=90°,AB=4,∠A=30°,
∴∠B=60°,BC=2
∴的长为=,
故选:C.
【点评】本题主要考查了弧长公式的运用和直角三角形30度角的性质,解题时注意弧长公式为:l=(弧长为l,圆心角度数为n,圆的半径为R).
10.(4.00分)(2018•宁波)如图,平行于x轴的直线与函数y=(k1>0,x>0),y=(k2>0,x>0)的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点,若△ABC的面积为4,则k1﹣k2的值为( )
A.8 B.﹣8 C.4 D.﹣4
【考点】G5:反比例函数系数k的几何意义;G6:反比例函数图象上点的坐标特征.菁优网版权所有
【专题】1 :常规题型.
【分析】设A(a,h),B(b,h),根据反比例函数图象上点的坐标特征得出ah=k1,bh=k2.根据三角形的面积公式得到S△ABC=AB•yA=(a﹣b)h=(ah﹣bh)=(k1﹣k2)=4,求出k1﹣k2=8.
【解答】解:∵AB∥x轴,
∴A,B两点纵坐标相同.
设A(a,h),B(b,h),则ah=k1,bh=k2.
∵S△ABC=AB•yA=(a﹣b)h=(ah﹣bh)=(k1﹣k2)=4,
∴k1﹣k2=8.
故选:A.
【点评】本题考查了反比例函数图象上点的坐标特征,点在函数的图象上,则点的坐标满足函数的解析式.也考查了三角形的面积.
11.(4.00分)(2018•宁波)如图,二次函数y=ax2+bx的图象开口向下,且经过第三象限的点P.若点P的横坐标为﹣1,则一次函数y=(a﹣b)x+b的图象大致是( )
A. B. C. D.
【考点】F3:一次函数的图象;H3:二次函数的性质.菁优网版权所有
【专题】53:函数及其图象.
【分析】根据二次函数的图象可以判断a、b、a﹣b的正负情况,从而可以得到一次函数经过哪几个象限,本题得以解决.
【解答】解:由二次函数的图象可知,
a<0,b<0,
当x=﹣1时,y=a﹣b<0,
∴y=(a﹣b)x+b的图象在第二、三、四象限,
故选:D.
【点评】本题考查二次函数的性质、一次函数的性质,解答本题的关键是明确题意,利用函数的思想解答.
12.(4.00分)(2018•宁波)在矩形ABCD内,将两张边长分别为a和b(a>b)的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S1,图2中阴影部分的面积为S2.当AD﹣AB=2时,S2﹣S1的值为( )
A.2a B.2b C.2a﹣2b D.﹣2b
【考点】4I:整式的混合运算.菁优网版权所有
【专题】11 :计算题.
【分析】利用面积的和差分别表示出S1和S2,然后利用整式的混合运算计算它们的差.
【解答】解:S1=(AB﹣a)•a+(CD﹣b)(AD﹣a)=(AB﹣a)•a+(AB﹣b)(AD﹣a),
S2=AB(AD﹣a)+(a﹣b)(AB﹣a),
∴S2﹣S1=AB(AD﹣a)+(a﹣b)(AB﹣a)﹣(AB﹣a)•a﹣(AB﹣b)(AD﹣a)=(AD﹣a)(AB﹣AB+b)+(AB﹣a)(a﹣b﹣a)=b•AD﹣ab﹣b•AB+ab=b(AD﹣AB)=2b.
故选:B.
【点评】本题考查了整式的混合运算:整体”思想在整式运算中较为常见,适时采用整体思想可使问题简单化,并且迅速地解决相关问题,此时应注意被看做整体的代数式通常要用括号括起来.也考查了正方形的性质.
二、填空题(每小题4分,共24分)
13.(4.00分)(2018•宁波)计算:|﹣2018|= 2018 .
【考点】15:绝对值.菁优网版权所有
【专题】1 :常规题型.
【分析】直接利用绝对值的性质得出答案.
【解答】解:|﹣2018|=2018.
故答案为:2018.
【点评】此题主要考查了绝对值,正确把握绝对值的定义是解题关键.
14.(4.00分)(2018•宁波)要使分式有意义,x的取值应满足 x≠1 .
【考点】62:分式有意义的条件.菁优网版权所有
【专题】1 :常规题型.
【分析】直接利用分式有意义则分母不能为零,进而得出答案.
【解答】解:要使分式有意义,则:x﹣1≠0.
解得:x≠1,故x的取值应满足:x≠1.
故答案为:x≠1.
【点评】此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键.
15.(4.00分)(2018•宁波)已知x,y满足方程组,则x2﹣4y2的值为 ﹣8 .
【考点】97:二元一次方程组的解.菁优网版权所有
【专题】11 :计算题.
【分析】根据平方差公式即可求出答案.
【解答】解:原式=(x+2y)(x﹣2y)
=﹣3×5
=﹣15
故答案为:﹣15
【点评】本题考查因式分解,解题的关键是熟练运用平方差公式,本题属于基础题型.
16.(4.00分)(2018•宁波)如图,某高速公路建设中需要测量某条江的宽度AB,飞机上的测量人员在C处测得A,B两点的俯角分别为45°和30°.若飞机离地面的高度CH为1200米,且点H,A,B在同一水平直线上,则这条江的宽度AB为 1200(﹣1) 米(结果保留根号).
【考点】TA:解直角三角形的应用﹣仰角俯角问题.菁优网版权所有
【专题】1 :常规题型.
【分析】在Rt△ACH和Rt△HCB中,利用锐角三角函数,用CH表示出AH、BH的长,然后计算出AB的长.
【解答】解:由于CD∥HB,
∴∠CAH=∠ACD=45°,∠B=∠BCD=30°
在Rt△ACH中,∵∴∠CAH=45°
∴AH=CH=1200米,
在Rt△HCB,∵tan∠B=
∴HB==
==1200(米).
∴AB=HB﹣HA
=1200﹣1200
=1200(﹣1)米
故答案为:1200(﹣1)
【点评】本题考查了锐角三角函数的仰角、俯角问题.题目难度不大,解决本题的关键是用含CH的式子表示出AH和BH.
17.(4.00分)(2018•宁波)如图,正方形ABCD的边长为8,M是AB的中点,P是BC边上的动点,连结PM,以点P为圆心,PM长为半径作⊙P.当⊙P与正方形ABCD的边相切时,BP的长为 3或4 .
【考点】LE:正方形的性质;MC:切线的性质.菁优网版权所有
【专题】559:圆的有关概念及性质.
【分析】分两种情形分别求解:如图1中,当⊙P与直线CD相切时;如图2中当⊙P与直线AD相切时.设切点为K,连接PK,则PK⊥AD,四边形PKDC是矩形;
【解答】解:如图1中,当⊙P与直线CD相切时,设PC=PM=m.
在Rt△PBM中,∵PM2=BM2+PB2,
∴x2=42+(8﹣x)2,
∴x=5,
∴PC=5,BP=BC﹣PC=8﹣5=3.
如图2中当⊙P与直线AD相切时.设切点为K,连接PK,则PK⊥AD,四边形PKDC是矩形.
∴PM=PK=CD=2BM,
∴BM=4,PM=8,
在Rt△PBM中,PB==4.
综上所述,BP的长为3或4.
【点评】本题考查切线的性质、正方形的性质、勾股定理等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题.
18.(4.00分)(2018•宁波)如图,在菱形ABCD中,AB=2,∠B是锐角,AE⊥BC于点E,M是AB的中点,连结
MD,ME.若∠EMD=90°,则cosB的值为 .
【考点】L8:菱形的性质;T7:解直角三角形.菁优网版权所有
【分析】延长DM交CB的延长线于点H.首先证明DE=EH,设BE=x,利用勾股定理构建方程求出x即可解决问题.
【解答】解:延长DM交CB的延长线于点H.
∵四边形ABCD是菱形,
∴AB=BC=AD=2,AD∥CH,
∴∠ADM=∠H,
∵AM=BM,∠AMD=∠HMB,
∴△ADM≌△BHM,
∴AD=HB=2,
∵EM⊥DH,
∴EH=ED,设BE=x,
∵AE⊥BC,
∴AE⊥AD,
∴∠AEB=∠EAD=90°
∵AE2=AB2﹣BE2=DE2﹣AD2,
∴22﹣x2=(2+x)2﹣22,
∴x=﹣1或﹣﹣1(舍弃),
∴cosB==,
故答案为.
【点评】本题考查菱形的性质、勾股定理、线段的垂直平分线的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.
三、解答题(本大题有8小题,共78分)
19.(6.00分)(2018•宁波)先化简,再求值:(x﹣1)2+x(3﹣x),其中x=﹣.
【考点】4J:整式的混合运算—化简求值.菁优网版权所有
【专题】1 :常规题型.
【分析】首先计算完全平方,再计算单项式乘以多项式,再合并同类项,化简后再把x的值代入即可.
【解答】解:原式=x2﹣2x+1+3x﹣x2=x+1,
当x=﹣时,原式=﹣+1=.
【点评】此题主要考查了整式的混合运算﹣﹣化简求值,关键是先按运算顺序把整式化简,再把对应字母的值代入求整式的值.
20.(8.00分)(2018•宁波)在5×3的方格纸中,△ABC的三个顶点都在格点上.
(1)在图1中画出线段BD,使BD∥AC,其中D是格点;
(2)在图2中画出线段BE,使BE⊥AC,其中E是格点.
【考点】JB:平行线的判定与性质;N4:作图—应用与设计作图.菁优网版权所有
【专题】13 :作图题.
【分析】(1)将线段AC沿着AB方向平移2个单位,即可得到线段BD;
(2)利用2×3的长方形的对角线,即可得到线段BE⊥AC.
【解答】解:(1)如图所示,线段BD即为所求;
(2)如图所示,线段BE即为所求.
【点评】本题主要考查了作图以及平行四边形的性质,首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.
21.(8.00分)(2018•宁波)在第23个世界读书日前夕,我市某中学为了解本校学生的每周课外阅读时间(用t表示,单位:小时),采用随机抽样的方法进行问卷调查,调查结果按0≤t<2,2≤t<3,3≤t<4,t≥4分为四个等级,并依次用A,B,C,D表示,根据调查结果统计的数据,绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:
(1)求本次调查的学生人数;
(2)求扇形统计图中等级B所在扇形的圆心角度数,并把条形统计图补充完整;
(3)若该校共有学生1200人,试估计每周课外阅读时间满足3≤t<4的人数.
【考点】V5:用样本估计总体;V8:频数(率)分布直方图;VB:扇形统计图.菁优网版权所有
【专题】1 :常规题型.
【分析】(1)由条形图、扇形图中给出的级别A的数字,可计算出调查学生人数;
(2)先计算出C在扇形图中的百分比,用1﹣[(A+D+C)在扇形图中的百分比]可计算出B在扇形图中的百分比,再计算出B在扇形的圆心角.
(3)总人数×课外阅读时间满足3≤t<4的百分比即得所求.
【解答】解:(1)由条形图知,A级的人数为20人,
由扇形图知:A级人数占总调查人数的10%
所以:20÷10%=20×=200(人)
即本次调查的学生人数为200人;
(2)由条形图知:C级的人数为60人
所以C级所占的百分比为:×100%=30%,
B级所占的百分比为:1﹣10%﹣30%﹣45%=15%,
B级的人数为200×15%=30(人)
D级的人数为:200×45%=90(人)
B所在扇形的圆心角为:360°×15%=54°.
(3)因为C级所占的百分比为30%,
所以全校每周课外阅读时间满足3≤t<4的人数为:1200×30%=360(人)
答:全校每周课外阅读时间满足3≤t<4的约有360人.
【点评】本题考查了扇形图和条形图的相关知识.题目难度不大.扇形图中某项的百分比=×100%,扇形图中某项圆心角的度数=360°×该项在扇形图中的百分比.
22.(10.00分)(2018•宁波)已知抛物线y=﹣x2+bx+c经过点(1,0),(0,).
(1)求该抛物线的函数表达式;
(2)将抛物线y=﹣x2+bx+c平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的函数表达式.
【考点】H3:二次函数的性质;H5:二次函数图象上点的坐标特征;H6:二次函数图象与几何变换;H8:待定系数法求二次函数解析式.菁优网版权所有
【专题】11 :计算题;535:二次函数图象及其性质.
【分析】(1)把已知点的坐标代入抛物线解析式求出b与c的值即可;
(2)指出满足题意的平移方法,并写出平移后的解析式即可.
【解答】解:(1)把(1,0),(0,)代入抛物线解析式得:,
解得:,
则抛物线解析式为y=﹣x2﹣x+;
(2)抛物线解析式为y=﹣x2﹣x+=﹣(x+1)2+2,
将抛物线向右平移一个单位,向下平移2个单位,解析式变为y=﹣x2.
【点评】此题考查了二次函数图象与几何变换,二次函数的性质,二次函数图象上点的坐标特征,以及待定系数法求二次函数解析式,熟练掌握二次函数性质是解本题的关键.
23.(10.00分)(2018•宁波)如图,在△ABC中,∠ACB=90°,AC=BC,D是AB边上一点(点D与A,B不重合),连结CD,将线段CD绕点C按逆时针方向旋转90°得到线段CE,连结DE交BC于点F,连接BE.
(1)求证:△ACD≌△BCE;
(2)当AD=BF时,求∠BEF的度数.
【考点】KD:全等三角形的判定与性质;KW:等腰直角三角形;R2:旋转的性质.菁优网版权所有
【专题】14 :证明题.
【分析】(1)由题意可知:CD=CE,∠DCE=90°,由于∠ACB=90°,所以∠ACD=∠ACB﹣∠DCB,∠BCE=∠DCE﹣∠DCB,所以∠ACD=∠BCE,从而可证明△ACD≌△BCE(SAS)
(2)由△ACD≌△BCE(SAS)可知:∠A=∠CBE=45°,BE=BF,从而可求出∠BEF的度数.
【解答】解:(1)由题意可知:CD=CE,∠DCE=90°,
∵∠ACB=90°,
∴∠ACD=∠ACB﹣∠DCB,
∠BCE=∠DCE﹣∠DCB,
∴∠ACD=∠BCE,
在△ACD与△BCE中,
∴△ACD≌△BCE(SAS)
(2)∵∠ACB=90°,AC=BC,
∴∠A=45°,
由(1)可知:∠A=∠CBE=45°,
∵AD=BF,
∴BE=BF,
∴∠BEF=67.5°
【点评】本题考查全等三角形的判定与性质,解题的关键是熟练运用旋转的性质以及全等三角形的判定与性质,本题属于中等题型.
24.(10.00分)(2018•宁波)某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.
(1)求甲、乙两种商品的每件进价;
(2)该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变.要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?
【考点】B7:分式方程的应用;C9:一元一次不等式的应用.菁优网版权所有
【专题】1 :常规题型.
【分析】(1)设甲种商品的每件进价为x元,乙种商品的每件进价为y元.根据“某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.购进的甲、乙两种商品件数相同”列出方程;
(2)设甲种商品按原销售单价销售a件,则由“两种商品全部售完后共获利不少于2460元”列出不等式.
【解答】解:(1)设甲种商品的每件进价为x元,则乙种商品的每件进价为(x+8)元.
根据题意,得,=,
解得 x=40.
经检验,x=40是原方程的解.
答:甲种商品的每件进价为40元,乙种商品的每件进价为48元;
(2)甲乙两种商品的销售量为=50.
设甲种商品按原销售单价销售a件,则
(60﹣40)a+(60×0.7﹣40)(50﹣a)+(88﹣48)×50≥2460,
解得 a≥20.
答:甲种商品按原销售单价至少销售20件.
【点评】本题考查了分式方程的应用,一元一次不等式的应用.本题属于商品销售中的利润问题,对于此类问题,隐含着一个等量关系:利润=售价﹣进价.
25.(12.00分)(2018•宁波)若一个三角形一条边的平方等于另两条边的乘积,我们把这个三角形叫做比例三角形.
(1)已知△ABC是比例三角形,AB=2,BC=3,请直接写出所有满足条件的AC的长;
(2)如图1,在四边形ABCD中,AD∥BC,对角线BD平分∠ABC,∠BAC=∠ADC.求证:△ABC是比例三角形.
(3)如图2,在(2)的条件下,当∠ADC=90°时,求的值.
【考点】SO:相似形综合题.菁优网版权所有
【专题】152:几何综合题;55D:图形的相似.
【分析】(1)根据比例三角形的定义分AB2=BC•AC、BC2=AB•AC、AC2=AB•BC三种情况分别代入计算可得;
(2)先证△ABC∽△DCA得CA2=BC•AD,再由∠ADB=∠CBD=∠ABD知AB=AD即可得;
(3)作AH⊥BD,由AB=AD知BH=BD,再证△ABH∽△DBC得AB•BC=BH•DB,即AB•BC=BD2,结合AB•BC=AC2知BD2=AC2,据此可得答案.
【解答】解:(1)∵△ABC是比例三角形,且AB=2、AC=3,
①当AB2=BC•AC时,得:4=3AC,解得:AC=;
②当BC2=AB•AC时,得:9=2AC,解得:AC=;
③当AC2=AB•BC时,得:AC=6,解得:AC=(负值舍去);
所以当AC=或或时,△ABC是比例三角形;
(2)∵AD∥BC,
∴∠ACB=∠CAD,
又∵∠BAC=∠ADC,
∴△ABC∽△DCA,
∴=,即CA2=BC•AD,
∵AD∥BC,
∴∠ADB=∠CBD,
∵BD平分∠ABC,
∴∠ABD=∠CBD,
∴∠ADB=∠ABD,
∴AB=AD,
∴CA2=BC•AB,
∴△ABC是比例三角形;
(3)如图,过点A作AH⊥BD于点H,
∵AB=AD,
∴BH=BD,
∵AD∥BC,∠ADC=90°,
∴∠BCD=90°,
∴∠BHA=∠BCD=90°,
又∵∠ABH=∠DBC,
∴△ABH∽△DBC,
∴=,即AB•BC=BH•DB,
∴AB•BC=BD2,
又∵AB•BC=AC2,
∴BD2=AC2,
∴=.
【点评】本题主要考查相似三角形的综合问题,解题的关键是理解比例三角形的定义,并熟练掌握相似三角形的判定与性质.
26.(14.00分)(2018•宁波)如图1,直线l:y=﹣x+b与x轴交于点A(4,0),与y轴交于点B,点C是线段OA上一动点(0<AC<).以点A为圆心,AC长为半径作⊙A交x轴于另一点D,交线段AB于点E,连结OE并延长交⊙A于点F.
(1)求直线l的函数表达式和tan∠BAO的值;
(2)如图2,连结CE,当CE=EF时,
①求证:△OCE∽△OEA;
②求点E的坐标;
(3)当点C在线段OA上运动时,求OE•EF的最大值.
【考点】MR:圆的综合题.菁优网版权所有
【专题】15 :综合题.
【分析】(1)利用待定系数法求出b即可得出直线l表达式,即可求出OA,OB,即可得出结论;
(2)①先判断出∠CDF=2∠CDE,进而得出∠OAE=∠ODF,即可得出结论;
②设出EM=3m,AM=4m,进而得出点E坐标,即可得出OE的平方,再根据①的相似得出比例式得出OE的平方,建立方程即可得出结论;
(3)利用面积法求出OG,进而得出AG,HE,再构造相似三角形,即可得出结论.
【解答】解:∵直线l:y=﹣x+b与x轴交于点A(4,0),
∴﹣×4+b=0,
∴b=3,
∴直线l的函数表达式y=﹣x+3,
∴B(0,3),
∴OA=4,OB=3,
在Rt△AOB中,tan∠BAO==;
(2)①如图2,连接DF,∵CE=EF,
∴∠CDE=∠FDE,
∴∠CDF=2∠CDE,
∵∠OAE=2∠CDE,
∴∠OAE=∠ODF,
∵四边形CEFD是⊙O的圆内接四边形,
∴∠OEC=∠ODF,
∴∠OEC=∠OAE,
∵∠COE=∠EOA,
∴△COE∽△EOA,
②过点E⊥OA于M,
由①知,tan∠OAB=,
设EM=3m,则AM=4m,
∴OM=4﹣4m,AE=5m,
∴E(4﹣4m,3m),AC=5m,∴
OC=4﹣5m,
由①知,△COE∽△EOA,
∴,
∴OE2=OA•OC=4(4﹣5m)=16﹣20m,
∵E(4﹣4m,3m),
∴(4﹣4m)2+9m2=25m2﹣32m+16,
∴25m2﹣32m+16=16﹣20m,
∴m=0(舍)或m=,
∴4﹣4m=,3m=,
∴(,),
(3)如图,设⊙O的半径为r,过点O作OG⊥AB于G,
∵A(4,0),B(0,3),
∴OA=4,OB=3,
∴AB=5,
∴AB×OG=OA×OB,
∴OG=,
∴AG==×=,
∴EG=AG﹣AE=﹣r,
连接FH,
∵EH是⊙O直径,
∴EH=2r,∠EFH=90°=∠EGO,
∵∠OEG=∠HEF,
∴△OEG∽△HEF,
∴,
∴OE•EF=HE•EG=2r(﹣r)=﹣2(r﹣)2+,
∴r=时,OE•EF最大值为.
【点评】此题是圆的综合题,主要考查了待定系数法,相似三角形的判定和性质,锐角三角函数,勾股定理,正确作出辅助线是解本题的关键.
考点卡片
1.绝对值
(1)概念:数轴上某个数与原点的距离叫做这个数的绝对值.
①互为相反数的两个数绝对值相等;
②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.
③有理数的绝对值都是非负数.
(2)如果用字母a表示有理数,则数a 绝对值要由字母a本身的取值来确定:
①当a是正有理数时,a的绝对值是它本身a;
②当a是负有理数时,a的绝对值是它的相反数﹣a;
③当a是零时,a的绝对值是零.
即|a|={a(a>0)0(a=0)﹣a(a<0)
2.有理数大小比较
(1)有理数的大小比较
比较有理数的大小可以利用数轴,他们从右到左的顺序,即从大到小的顺序(在数轴上表示的两个有理数,右边的数总比左边的数大);也可以利用数的性质比较异号两数及0的大小,利用绝对值比较两个负数的大小.
(2)有理数大小比较的法则:
①正数都大于0;
②负数都小于0;
③正数大于一切负数;
④两个负数,绝对值大的其值反而小.
【规律方法】有理数大小比较的三种方法
1.法则比较:正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.
2.数轴比较:在数轴上右边的点表示的数大于左边的点表示的数.
3.作差比较:
若a﹣b>0,则a>b;
若a﹣b<0,则a<b;
若a﹣b=0,则a=b.
3.科学记数法—表示较大的数
(1)科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法.【科学记数法形式:a×10n,其中1≤a<10,n为正整数.】
(2)规律方法总结:
①科学记数法中a的要求和10的指数n的表示规律为关键,由于10的指数比原来的整数位数少1;按此规律,先数一下原数的整数位数,即可求出10的指数n.
②记数法要求是大于10的数可用科学记数法表示,实质上绝对值大于10的负数同样可用此法表示,只是前面多一个负号.
4.合并同类项
(1)定义:把多项式中同类项合成一项,叫做合并同类项.
(2)合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.
(3)合并同类项时要注意以下三点:
①要掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的两条标准:带有相同系数的代数项;字母和字母指数;
②明确合并同类项的含义是把多项式中的同类项合并成一项,经过合并同类项,式的项数会减少,达到化简多项式的目的;
③“合并”是指同类项的系数的相加,并把得到的结果作为新的系数,要保持同类项的字母和字母的指数不变.
5.同底数幂的乘法
(1)同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.
am•an=a m+n(m,n是正整数)
(2)推广:am•an•ap=a m+n+p(m,n,p都是正整数)
在应用同底数幂的乘法法则时,应注意:①底数必须相同,如23与25,(a2b2)3与(a2b2)4,(x﹣y)2与(x﹣y)3等;②a可以是单项式,也可以是多项式;③按照运算性质,只有相乘时才是底数不变,指数相加.
(3)概括整合:同底数幂的乘法,是学习整式乘除运算的基础,是学好整式运算的关键.在运用时要抓住“同底数”这一关键点,同时注意,有的底数可能并不相同,这时可以适当变形为同底数幂.
6.幂的乘方与积的乘方
(1)幂的乘方法则:底数不变,指数相乘.
(am)n=amn(m,n是正整数)
注意:①幂的乘方的底数指的是幂的底数;②性质中“指数相乘”指的是幂的指数与乘方的指数相乘,这里注意与同底数幂的乘法中“指数相加”的区别.
(2)积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘.
(ab)n=anbn(n是正整数)
注意:①因式是三个或三个以上积的乘方,法则仍适用;②运用时数字因数的乘方应根据乘方的意义,计算出最后的结果.
7.同底数幂的除法
同底数幂的除法法则:底数不变,指数相减.
am÷an=a m﹣n(a≠0,m,n是正整数,m>n)
①底数a≠0,因为0不能做除数;
②单独的一个字母,其指数是1,而不是0;
③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.
8.整式的混合运算
(1)有乘方、乘除的混合运算中,要按照先乘方后乘除的顺序运算,其运算顺序和有理数的混合运算顺序相似.
(2)“整体”思想在整式运算中较为常见,适时采用整体思想可使问题简单化,并且迅速地解决相关问题,此时应注意被看做整体的代数式通常要用括号括起来.
9.整式的混合运算—化简求值
先按运算顺序把整式化简,再把对应字母的值代入求整式的值.
有乘方、乘除的混合运算中,要按照先乘方后乘除的顺序运算,其运算顺序和有理数的混合运算顺序相似.
10.分式有意义的条件
(1)分式有意义的条件是分母不等于零.
(2)分式无意义的条件是分母等于零.
(3)分式的值为正数的条件是分子、分母同号.
(4)分式的值为负数的条件是分子、分母异号.
11.二元一次方程组的解
(1)定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.
(2)一般情况下二元一次方程组的解是唯一的.数学概念是数学的基础与出发点,当遇到有关二元一次方程组的解的问题时,要回到定义中去,通常采用代入法,即将解代入原方程组,这种方法主要用在求方程中的字母系数.
12.分式方程的应用
1、列分式方程解应用题的一般步骤:设、列、解、验、答.
必须严格按照这5步进行做题,规范解题步骤,另外还要注意完整性:如设和答叙述要完整,要写出单位等.
2、要掌握常见问题中的基本关系,如行程问题:速度=路程时间;工作量问题:工作效率=工作量工作时间
等等.
列分式方程解应用题一定要审清题意,找相等关系是着眼点,要学会分析题意,提高理解能力.
13.一元一次不等式的应用
(1)由实际问题中的不等关系列出不等式,建立解决问题的数学模型,通过解不等式可以得到实际问题的答案.
(2)列不等式解应用题需要以“至少”、“最多”、“不超过”、“不低于”等词来体现问题中的不等关系.因此,建立不等式要善于从“关键词”中挖掘其内涵.
(3)列一元一次不等式解决实际问题的方法和步骤:
①弄清题中数量关系,用字母表示未知数.
②根据题中的不等关系列出不等式.
③解不等式,求出解集.
④写出符合题意的解.
14.一次函数的图象
(1)一次函数的图象的画法:经过两点(0,b)、(﹣,0)或(1,k+b)作直线y=kx+b.
注意:①使用两点法画一次函数的图象,不一定就选择上面的两点,而要根据具体情况,所选取的点的横、纵坐标尽量取整数,以便于描点准确.②一次函数的图象是与坐标轴不平行的一条直线(正比例函数是过原点的直线),但直线不一定是一次函数的图象.如x=a,y=b分别是与y轴,x轴平行的直线,就不是一次函数的图象.
(2)一次函数图象之间的位置关系:直线y=kx+b,可以看做由直线y=kx平移|b|个单位而得到.
当b>0时,向上平移;b<0时,向下平移.
注意:①如果两条直线平行,则其比例系数相等;反之亦然;
②将直线平移,其规律是:上加下减,左加右减;
③两条直线相交,其交点都适合这两条直线.
15.反比例函数系数k的几何意义
比例系数k的几何意义
在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.
在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.
16.反比例函数图象上点的坐标特征
反比例函数y=k/x(k为常数,k≠0)的图象是双曲线,
①图象上的点(x,y)的横纵坐标的积是定值k,即xy=k;
②双曲线是关于原点对称的,两个分支上的点也是关于原点对称;
③在y=k/x图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.
17.二次函数的性质
二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:
①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.
②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.
③抛物线y=ax2+bx+c(a≠0)的图象可由抛物线y=ax2的图象向右或向左(右)平移|﹣|个单位,再向上或向下平移||个单位得到的.
18.二次函数图象上点的坐标特征
二次函数y=ax2+bx+c(a≠0)的图象是抛物线,顶点坐标是(﹣,).
①抛物线是关于对称轴x=﹣成轴对称,所以抛物线上的点关于对称轴对称,且都满足函数函数关系式.顶点是抛物线的最高点或最低点.
②抛物线与y轴交点的纵坐标是函数解析中的c值.
③抛物线与x轴的两个交点关于对称轴对称,设两个交点分别是(x1,0),(x2,0),则其对称轴为x=.
19.二次函数图象与几何变换
由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.
20.待定系数法求二次函数解析式
(1)二次函数的解析式有三种常见形式:
①一般式:y=ax2+bx+c(a,b,c是常数,a≠0); ②顶点式:y=a(x﹣h)2+k(a,h,k是常数,a≠0),其中(h,k)为顶点坐标; ③交点式:y=a(x﹣x1)(x﹣x2)(a,b,c是常数,a≠0);
(2)用待定系数法求二次函数的解析式.
在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.
21.平行线的判定与性质
(1)平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.
(2)应用平行线的判定和性质定理时,一定要弄清题设和结论,切莫混淆.
(3)平行线的判定与性质的联系与区别
区别:性质由形到数,用于推导角的关系并计算;判定由数到形,用于判定两直线平行.
联系:性质与判定的已知和结论正好相反,都是角的关系与平行线相关.
(4)辅助线规律,经常作出两平行线平行的直线或作出联系两直线的截线,构造出三类角.
22.全等三角形的判定与性质
(1)全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.
(2)在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.
23.含30度角的直角三角形
(1)含30度角的直角三角形的性质:
在直角三角形中,30°角所对的直角边等于斜边的一半.
(2)此结论是由等边三角形的性质推出,体现了直角三角形的性质,它在解直角三角形的相关问题中常用来求边的长度和角的度数.
(3)注意:①该性质是直角三角形中含有特殊度数的角(30°)的特殊定理,非直角三角形或一般直角三角形不能应用;
②应用时,要注意找准30°的角所对的直角边,点明斜边.
24.等腰直角三角形
(1)两条直角边相等的直角三角形叫做等腰直角三角形.
(2)等腰直角三角形是一种特殊的三角形,具有所有三角形的性质,还具备等腰三角形和直角三角形的所有性质.即:两个锐角都是45°,斜边上中线、角平分线、斜边上的高,三线合一,等腰直角三角形斜边上的高为外接圆的半径R,而高又为内切圆的直径(因为等腰直角三角形的两个小角均为45°,高又垂直于斜边,所以两个小三角形均为等腰直角三角形,则两腰相等);
(3)若设等腰直角三角形内切圆的半径r=1,则外接圆的半径R=+1,所以r:R=1:+1.
25.三角形中位线定理
(1)三角形中位线定理:
三角形的中位线平行于第三边,并且等于第三边的一半.
(2)几何语言:
如图,∵点D、E分别是AB、AC的中点
∴DE∥BC,DE=BC.
26.多边形内角与外角
(1)多边形内角和定理:(n﹣2)•180 (n≥3)且n为整数)
此公式推导的基本方法是从n边形的一个顶点出发引出(n﹣3)条对角线,将n边形分割为(n﹣2)个三角形,这(n﹣2)个三角形的所有内角之和正好是n边形的内角和.除此方法之和还有其他几种方法,但这些方法的基本思想是一样的.即将多边形转化为三角形,这也是研究多边形问题常用的方法.
(2)多边形的外角和等于360度.
①多边形的外角和指每个顶点处取一个外角,则n边形取n个外角,无论边数是几,其外角和永远为360°.
②借助内角和和邻补角概念共同推出以下结论:外角和=180°n﹣(n﹣2)•180°=360°.
27.平行四边形的性质
(1)平行四边形的概念:有两组对边分别平行的四边形叫做平行四边形.
(2)平行四边形的性质:
①边:平行四边形的对边相等.
②角:平行四边形的对角相等.
③对角线:平行四边形的对角线互相平分.
(3)平行线间的距离处处相等.
(4)平行四边形的面积:
①平行四边形的面积等于它的底和这个底上的高的积.
②同底(等底)同高(等高)的平行四边形面积相等.
28.菱形的性质
(1)菱形的定义:有一组邻边相等的平行四边形叫做菱形.
(2)菱形的性质
①菱形具有平行四边形的一切性质;
②菱形的四条边都相等;
③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;
④菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.
(3)菱形的面积计算
①利用平行四边形的面积公式.
②菱形面积=ab.(a、b是两条对角线的长度)
29.正方形的性质
(1)正方形的定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.
(2)正方形的性质
①正方形的四条边都相等,四个角都是直角;
②正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;
③正方形具有四边形、平行四边形、矩形、菱形的一切性质.
④两条对角线将正方形分成四个全等的等腰直角三角形,同时,正方形又是轴对称图形,有四条对称轴.
30.切线的性质
(1)切线的性质
①圆的切线垂直于经过切点的半径.
②经过圆心且垂直于切线的直线必经过切点.
③经过切点且垂直于切线的直线必经过圆心.
(2)切线的性质可总结如下:
如果一条直线符合下列三个条件中的任意两个,那么它一定满足第三个条件,这三个条件是:①直线过圆心;②直线过切点;③直线与圆的切线垂直.
(3)切线性质的运用
由定理可知,若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.
31.弧长的计算
(1)圆周长公式:C=2πR
(2)弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为R)
①在弧长的计算公式中,n是表示1°的圆心角的倍数,n和180都不要带单位.
②若圆心角的单位不全是度,则需要先化为度后再计算弧长.
③题设未标明精确度的,可以将弧长用π表示.
④正确区分弧、弧的度数、弧长三个概念,度数相等的弧,弧长不一定相等,弧长相等的弧不一定是等弧,只有在同圆或等圆中,才有等弧的概念,才是三者的统一.
32.圆的综合题
圆的综合题.
33.作图—应用与设计作图
应用与设计作图主要把简单作图放入实际问题中.
首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.
34.旋转的性质
(1)旋转的性质:
①对应点到旋转中心的距离相等. ②对应点与旋转中心所连线段的夹角等于旋转角. ③旋转前、后的图形全等. (2)旋转三要素:①旋转中心; ②旋转方向; ③旋转角度. 注意:三要素中只要任意改变一个,图形就会不一样.
35.中心对称图形
(1)定义
把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.
注意:中心对称图形和中心对称不同,中心对称是两个图形之间的关系,而中心对称图形是指一个图形自身的特点,这点应注意区分,它们性质相同,应用方法相同.
(2)常见的中心对称图形
平行四边形、圆形、正方形、长方形等等.
36.相似形综合题
相似形综合题.
37.解直角三角形
(1)解直角三角形的定义
在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.
(2)解直角三角形要用到的关系
①锐角直角的关系:∠A+∠B=90°;
②三边之间的关系:a2+b2=c2;
③边角之间的关系:
sinA=∠A的对边斜边=ac,cosA=∠A的邻边斜边=bc,tanA=∠A的对边∠A的邻边=ab.
(a,b,c分别是∠A、∠B、∠C的对边)
38.解直角三角形的应用-仰角俯角问题
(1)概念:仰角是向上看的视线与水平线的夹角;俯角是向下看的视线与水平线的夹角.
(2)解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,另当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.
39.简单组合体的三视图
(1)画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.
(2)视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.
(3)画物体的三视图的口诀为:
主、俯:长对正;
主、左:高平齐;
俯、左:宽相等.
40.用样本估计总体
用样本估计总体是统计的基本思想.
1、用样本的频率分布估计总体分布:
从一个总体得到一个包含大量数据的样本,我们很难从一个个数字中直接看出样本所包含的信息.这时,我们用频率分布直方图来表示相应样本的频率分布,从而去估计总体的分布情况.
2、用样本的数字特征估计总体的数字特征(主要数据有众数、中位数、平均数、标准差与方差 ).
一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.
41.频数(率)分布直方图
画频率分布直方图的步骤:
(1)计算极差,即计算最大值与最小值的差.(2)决定组距与组数(组数与样本容量有关,一般来说样本容量越大,分组就越多,样本容量不超过100时,按数据的多少,常分成5~12组).(3)确定分点,将数据分组.(4)列频率分布表.(5)绘制频率分布直方图.
注:①频率分布表列出的是在各个不同区间内取值的频率,频率分布直方图是用小长方形面积的大小来表示在各个区间内取值的频率.直角坐标系中的纵轴表示频率与组距的比值,即小长方形面积=组距×频数组距=频率.②各组频率的和等于1,即所有长方形面积的和等于1.③频率分布表在数量表示上比较确切,但不够直观、形象,不利于分析数据分布的总体态势.④从频率分布直方图可以清楚地看出数据分布的总体态势,但是从直方图本身得不出原始的数据内容.
42.扇形统计图
(1)扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.
(2)扇形图的特点:从扇形图上可以清楚地看出各部分数量和总数量之间的关系.
(3)制作扇形图的步骤
①根据有关数据先算出各部分在总体中所占的百分数,再算出各部分圆心角的度数,公式是各部分扇形圆心角的度数=部分占总体的百分比×360°. ②按比例取适当半径画一个圆;按扇形圆心角的度数用量角器在圆内量出各个扇形的圆心角的度数;
④在各扇形内写上相应的名称及百分数,并用不同的标记把各扇形区分开来.
43.算术平均数
(1)平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.
(2)算术平均数:对于n个数x1,x2,…,xn,则x¯=1n(x1+x2+…+xn)就叫做这n个数的算术平均数.
(3)算术平均数是加权平均数的一种特殊情况,加权平均数包含算术平均数,当加权平均数中的权相等时,就是算术平均数.
44.中位数
(1)中位数:
将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.
如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
(2)中位数代表了这组数据值大小的“中点”,不易受极端值影响,但不能充分利用所有数据的信息.
(3)中位数仅与数据的排列位置有关,某些数据的移动对中位数没有影响,中位数可能出现在所给数据中也可能不在所给的数据中出现,当一组数据中的个别数据变动较大时,可用中位数描述其趋势.
45.概率公式
(1)随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数.
(2)P(必然事件)=1.
(3)P(不可能事件)=0.
第1页(共1页)