![2020版高考化学二轮复习大题突破一化学反应原理综合高考真题(含解析)01](http://img-preview.51jiaoxi.com/3/7/5617140/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2020版高考化学二轮复习大题突破一化学反应原理综合高考真题(含解析)02](http://img-preview.51jiaoxi.com/3/7/5617140/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2020版高考化学二轮复习大题突破一化学反应原理综合高考真题(含解析)03](http://img-preview.51jiaoxi.com/3/7/5617140/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2020版高考化学二轮复习大题突破一化学反应原理综合高考真题(含解析)
展开大题突破一 化学反应原理综合
1.(2019·全国卷Ⅰ)水煤气变换[CO(g)+H2O(g)===CO2(g)+H2(g)]是重要的化工过程,主要用于合成氨、制氢以及合成气加工等工业领域中。回答下列问题:
(1)Shibata曾做过下列实验:①使纯H2缓慢地通过处于721℃下的过量氧化钻CoO(s),氧化钴部分被还原为金属钴Co(s),平衡后气体中H2的物质的量分数为0.0250。
②在同一温度下用CO还原CoO(s),平衡后气体中CO的物质的量分数为0.0192。
根据上述实验结果判断,还原CoO(s)为Co(s)的倾向是CO________H2(填“大于”或“小于”)。
(2)721℃时,在密闭容器中将等物质的量的CO(g)和H2O(g)混合,采用适当的催化剂进行反应,则平衡时体系中H2的物质的量分数为________(填标号)。
A.<0.25 B.0.25
C.0.25~0.50 D.0.50
E.>0.50
(3)我国学者结合实验与计算机模拟结果,研究了在金催化剂表面上水煤气变换的反应历程,如图所示,其中吸附在金催化剂表面上的物种用*标注。
可知水煤气变换的ΔH________0(填“大于”“等于”或“小于”)。该历程中最大能垒(活化能)E正________eV,写出该步骤的化学方程式_____________________________________________。
(4)Shoichi研究了467℃、489℃时水煤气变换中CO和H2分压随时间变化关系(如图所示),催化剂为氧化铁,实验初始时体系中的pH2O和pCO相等、pCO2和pH2相等。
计算曲线a的反应在30~90 min内的平均速率v(a)=________kPa·min-1。467℃时pH2和pCO随时间变化关系的曲线分别是________、________。489℃时pH2和pCO随时间变化关系的曲线分别是________、________。
[解析] (1)由题给信息①可知,H2(g)+CoO(s)Co(s)+H2O(g)(ⅰ) K1===39,由题给信息②可知,CO(g)+CoO(s)Co(s)+CO2(g)(ⅱ) K2==≈51.08。相同温度下,平衡常数越大,反应倾向越大,故CO还原氧化钴的倾向大于H2。(2)第(1)问和第(2)问的温度相同,利用盖斯定律,由(ⅱ)-(ⅰ)得CO(g)+H2O(g)CO2(g)+H2(g) K==≈1.31。设起始时CO(g)、H2O(g)的物质的量都为1 mol,容器体积为1 L,在721℃下,反应达平衡时H2的物质的量为x mol。
K==1.31,若K取1,则x=0.5,φ(H2)=0.25;若K取4,则x≈0.67,φ(H2)≈0.33。氢气的物质的量分数介于0.25与0.33之间,故选C。(3)观察起始态物质的相对能量与终态物质的相对能量知,终态物质相对能量低于始态物质相对能量,说明该反应是放热反应,ΔH小于0。过渡态物质相对能量与起始态物质相对能量相差越大,活化能越大,由题图知,最大活化能E正=1.86 eV-(-0.16 eV)=2.02 eV,该步起始物质为COOH*+H*+H2O*,产物为COOH*+2H*+OH*。(4)由题图可知,30~90 min内(a)==0.0047 kPa·min-1。水煤气变换中CO是反应物,H2是产物,又该反应是放热反应,升高温度,平衡向左移动,重新达到平衡时,H2的压强减小,CO的压强增大。故a曲线代表489℃时pH2随时间变化关系的曲线,d曲线代表489℃时pCO随时间变化关系的曲线,b曲线代表467℃时pH2随时间变化关系的曲线,c曲线代表467℃时pCO随时间变化关系的曲线。
[答案] (1)大于 (2)C (3)小于 2.02
COOH*+H*+H2O*===COOH*+2H*+OH*(或H2O*===H*+OH*)
(4)0.0047 b c a d
2.(2018·全国卷Ⅰ)采用N2O5为硝化剂是一种新型的绿色硝化技术,在含能材料、医药等工业中得到广泛应用。回答下列问题:
(1)1840年Devil用干燥的氯气通过干燥的硝酸银,得到N2O5。该反应的氧化产物是一种气体,其分子式为____________。
(2)F.Daniels等曾利用测压法在刚性反应器中研究了25 ℃时N2O5(g)分解反应:
其中NO2二聚为N2O4的反应可以迅速达到平衡。体系的总压强p随时间t的变化如表所示(t=∞时,N2O5(g)完全分解):
t/min | 0 | 40 | 80 | 160 | 260 | 1300 | 1700 | ∞ |
p/kPa | 35.8 | 40.3 | 42.5 | 45.9 | 49.2 | 61.2 | 62.3 | 63.1 |
①已知:2N2O5(g)===2N2O4(g)+O2(g)ΔH1=-4.4 kJ·mol-1
2NO2(g)===N2O4(g) ΔH2=-55.3 kJ·mol-1
则反应N2O5(g)===2NO2(g)+O2(g)的ΔH=______kJ·mol-1。
②研究表明,N2O5(g)分解的反应速率v=2×10-3×pN2O5(kPa·min-1)。t=62 min时,测得体系中pO2=2.9 kPa,则此时的pN2O5=________kPa,v=________kPa·min-1。
③若提高反应温度至35 ℃,则N2O5(g)完全分解后体系压强p∞(35 ℃)________63.1 kPa(填“大于”“等于”或“小于”),原因是_________________________________________________________________________________________________________________。
④25 ℃时N2O4(g)2NO2(g)反应的平衡常数Kp=________kPa(Kp为以分压表示的平衡常数,计算结果保留1位小数)。
(3)对于反应2N2O5(g)―→4NO2(g)+O2(g),R.A.Ogg提出如下反应历程:
第一步 N2O5NO2+NO3快速平衡
第二步 NO2+NO3―→NO+NO2+O2慢反应
第三步 NO+NO3―→2NO2快反应
其中可近似认为第二步反应不影响第一步的平衡。下列表述正确的是________(填标号)。
A.v(第一步的逆反应)>v(第二步反应)
B.反应的中间产物只有NO3
C.第二步中NO2与NO3的碰撞仅部分有效
D.第三步反应活化能较高
[解析] (1)氯气与硝酸银反应生成N2O5,氯气作氧化剂,还原产物为氯化银,又硝酸银中氮元素、银元素已经是最高化合价,则只能是氧元素化合价升高,所以气体氧化产物为O2。(2)①将已知热化学方程式依次编号为a、b,根据盖斯定律,由×a-b得N2O5(g)===2NO2(g)+O2(g) ΔH== kJ·mol-1=+53.1 kJ·mol-1。②t=62 min时,体系中pO2=2.9 kPa,根据三段式法得
则62 min时pN2O5=30.0 kPa,v=2×10-3×30.0 kPa·min-1=6.0×10-2 kPa·min-1。③刚性反应容器的体积不变,25 ℃ N2O5(g)完全分解时体系的总压强为63.1 kPa,升高温度,从两个方面分析:一方面是体积不变,升高温度,体系总压强增大;另一方面,2NO2N2O4的逆反应是吸热反应,升温,平衡向生成NO2的方向移动,体系物质的量增大,故体系总压强增大。④N2O5完全分解生成N2O4和O2,起始pN2O5=35.8 kPa,其完全分解时pN2O4=35.8 kPa,pO2=17.9 kPa,设25 ℃平衡时N2O4转化了x,则
N2O4 2NO2
平衡 35.8 kPa-x 2x
35.8 kPa-x+2x+17.9 kPa=63.1 kPa,解得x=9.4 kPa。平衡时,pN2O4=26.4 kPa,pNO2=18.8 kPa,K== kPa=13.4 kPa。
(3)快速平衡,说明第一步反应的正、逆反应速率都较大,则第一步反应的逆反应速率大于第二步反应的速率,A项正确;反应的中间产物除NO3外还有NO,B项错误;有效碰撞才能发生反应,第二步反应慢,说明部分碰撞有效,C项正确;第三步反应快,说明反应活化能较低,D项错误。
[答案] (1)O2
(2)①+53.1 ②30.0 6.0×10-2 ③大于 温度提高,体积不变,总压强提高;NO2二聚为放热反应,温度提高,平衡左移,体系物质的量增加,总压强提高 ④13.4
(3)AC
[省市卷]
1.(2019·北京卷)氢能源是最具应用前景的能源之一,高纯氢的制备是目前的研究热点。
(1)甲烷水蒸气催化重整是制高纯氢的方法之一。
①反应器中初始反应的生成物为H2和CO2,其物质的量之比为4∶1,甲烷和水蒸气反应的方程式是________________________。
②已知反应器中还存在如下反应:
ⅰ.CH4(g)+H2O(g)===CO(g)+3H2(g) ΔH1
ⅱ.CO(g)+H2O(g)===CO2(g)+H2(g) ΔH2
ⅲ.CH4(g)===C(s)+2H2(g) ΔH3
……
ⅲ为积炭反应,利用ΔH1和ΔH2计算ΔH3时,还需要利用________________反应的ΔH。
③反应物投料比采用n(H2O)∶n(CH4)=4∶1,大于初始反应的化学计量数之比,目的是________(选填字母序号)。
a.促进CH4转化 b.促进CO转化为CO2
c.减少积炭生成
④用CaO可以去除CO2。H2体积分数和CaO消耗率随时间变化关系如图所示。
从t1时开始,H2体积分数显著降低,单位时间CaO消耗率________(填“升高”“降低”或“不变”)。此时CaO消耗率约为35%,但已失效,结合化学方程式解释原因:
__________________________________________________。
(2)可利用太阳能光伏电池电解水制高纯氢,工作示意图如图。通过控制开关连接K1或K2,可交替得到H2和O2。
①制H2时,连接________。产生H2的电极反应式是
________________________________________________。
②改变开关连接方式,可得O2。
③结合①和②中电极3的电极反应式,说明电极3的作用:____________________________________________________________________________________________________________________。
[解析] (1)①根据CH4与H2O反应生成H2、CO2的物质的量之比为4∶1,结合原子守恒可得反应的化学方程式为CH4+2H2O(g)===4H2+CO2。②根据盖斯定律,由ⅰ+ⅱ-ⅲ或ⅰ-ⅱ-ⅲ可得目标热化学方程式。③反应物的投料比n(H2O)∶n(CH4)=4∶1,大于初始反应的化学计量数之比,H2O的物质的量增加,有利于促进CH4转化,促进CO转化为CO2,防止CH4分解生成C(s),从而减少积炭生成。④根据题图可知,从t1时开始,CaO消耗率曲线的斜率逐渐减小,单位时间内CaO消耗率逐渐降低。CaO与CO2反应生成CaCO3,CaCO3会覆盖在CaO表面,减少了CO2与CaO的接触面积,从而失效。(2)①电解碱性电解液时,H2O电离出的H+在阴极得到电子产生H2,根据题图可知电极1与电池负极连接,为阴极,所以制H2时,连接K1,产生H2的电极反应式为2H2O+2e-===H2↑+2OH-。③制备O2时碱性电解液中的OH-失去电子生成O2,连接K2,O2在电极2上产生。连接K1时,电极3为电解池的阳极,Ni(OH)2失去电子生成NiOOH,电极反应式为Ni(OH)2-e-+OH-===NiOOH+H2O,连接K2时,电极3为电解池的阴极,电极反应式为NiOOH+e-+H2O===Ni(OH)2+OH-,使电极3得以循环使用。
[答案] (1)①CH4+2H2O4H2+CO2
②C(s)+2H2O(g)===CO2(g)+2H2(g)或C(s)+CO2(g)===2CO(g)
③abc ④降低 CaO+CO2===CaCO3,CaCO3覆盖在CaO表面,减少了CO2与CaO的接触面积
(2)①K1 2H2O+2e-===H2↑+2OH-
③制H2时,电极3发生反应:Ni(OH)2+OH--e-===NiOOH+H2O。制O2时,上述电极反应逆向进行,使电极3得以循环使用
2.(2019·天津卷)多晶硅是制作光伏电池的关键材料。以下是由粗硅制备多晶硅的简易过程。
回答下列问题:
Ⅰ.硅粉与HCl在300℃时反应生成1 mol SiHCl3气体和H2,放出225 kJ热量,该反应的热化学方程式为______________________。SiHCl3的电子式为________。
Ⅱ.将SiCl4氢化为SiHCl3有三种方法,对应的反应依次为:
①SiCl4(g)+H2(g)SiHCl3(g)+HCl(g) ΔH1>0
②3SiCl4(g)+2H2(g)+Si(s)4SiHCl3(g) ΔH2<0
③2SiCl4(g)+H2(g)+Si(s)+HCl(g)3SiHCl3(g) ΔH3
(1)氢化过程中所需的高纯度H2可用惰性电极电解KOH溶液制备,写出产生H2的电极名称________(填“阳极”或“阴极”),该电极反应方程式为____________________________________________
_______________________________________________________。
(2)已知体系自由能变ΔG=ΔH-TΔS,ΔG<0时反应自发进行。三个氢化反应的ΔG与温度的关系如图1所示,可知:反应①能自发进行的最低温度是________;相同温度下,反应②比反应①的ΔG小,主要原因是________________________________________________
________________________________________________________。
(3)不同温度下反应②中SiCl4转化率如图2所示。下列叙述正确的是________(填序号)。
a.B点:v正>v逆 b.v正:A点>E点
c.反应适宜温度:480~520℃
(4)反应③的ΔH3=________(用ΔH1,ΔH2表示)。温度升高,反应③的平衡常数K________(填“增大”、“减小”或“不变”)。
(5)由粗硅制备多晶硅过程中循环使用的物质除SiCl4、SiHCl3和Si外,还有________(填分子式)。
[解析] Ⅰ.该反应的热化学方程式为:Si(s)+3HCl(g)SiHCl3(g)+H2(g) ΔH=-225 kJ·mol-1。SiHCl3的结构式为,故电子式为。Ⅱ.(1)用惰性电极电解KOH溶液,实质为电解水,阴极上产生氢气,电极反应式为:2H2O+2e-===2OH-+H2↑。(2)ΔG<0时,反应能自发进行,故反应①自发进行的最低温度为1000℃。由于ΔG=ΔH-TΔS,反应②的ΔH2<0,而反应①的ΔH1>0,ΔH2<ΔH1,ΔS1>ΔS2,因此相同温度下反应②比反应①的ΔG小的主要原因为ΔH2<ΔH1。(3)a项,同一点比较正逆反应速率看反应进行方向,B点反应正向进行,所以v正>v逆,正确;b项,不同点比较正逆反应速率看反应条件,A点温度低于E点温度,所以v正:A点<E点,错误;c项,根据图示,温度在480~520℃时,SiCl4转化率高,480~520℃为反应适宜温度,正确。(4)根据盖斯定律,由反应②-反应①,可得反应③,则ΔH3=ΔH2-ΔH1。由ΔH2<0,ΔH1>0知ΔH3<0,反应③为放热反应,升高温度,平衡逆向移动,平衡常数减小。(5)根据由粗硅制备多晶硅的过程可知,循环使用的物质还有HCl和H2。
[答案] Ⅰ.Si(s)+3HCl(g)SiHCl3(g)+H2(g) ΔH=-225 kJ·mol-1
Ⅱ.(1)阴极 2H2O+2e-===H2↑+2OH-或2H++2e-===H2↑
(2)1000℃ ΔH2<ΔH1导致反应②的ΔG小
(3)ac (4)ΔH2-ΔH1 减小 (5)HCl、H2