还剩18页未读,
继续阅读
2020届江苏省南通市高三下学期二模考前综合练习数学试题(解析版)
展开
2020届江苏省南通市高三下学期二模考前综合练习数学试题
一、填空题
1.记复数z=a+bi(i为虚数单位)的共轭复数为,已知z=2+i,则_____.
【答案】3﹣4i
【解析】计算得到z2=(2+i)2=3+4i,再计算得到答案.
【详解】
∵z=2+i,∴z2=(2+i)2=3+4i,则.
故答案为:3﹣4i.
【点睛】
本题考查了复数的运算,共轭复数,意在考查学生的计算能力.
2.已知集合U={1,3,5,9},A={1,3,9},B={1,9},则∁U(A∪B)=________.
【答案】{5}
【解析】易得A∪B=A={1,3,9},则∁U(A∪B)={5}.
3.某校共有师生1600人,其中教师有1000人,现用分层抽样的方法,从所有师生中抽取一个容量为80的样本,则抽取学生的人数为_____.
【答案】30
【解析】直接根据分层抽样的比例关系得到答案.
【详解】
分层抽样的抽取比例为,∴抽取学生的人数为60030.
故答案为:30.
【点睛】
本题考查了分层抽样的计算,属于简单题.
4.角α的顶点在坐标原点,始边与x轴的非负半轴重合,终边经过点P(1,2),则sin(π﹣α)的值是_____.
【答案】
【解析】计算sinα,再利用诱导公式计算得到答案.
【详解】
由题意可得x=1,y=2,r,∴sinα,∴sin(π﹣α)=sinα.
故答案为:.
【点睛】
本题考查了三角函数定义,诱导公式,意在考查学生的计算能力.
5.执行以下语句后,打印纸上打印出的结果应是:_____.
【答案】28
【解析】根据程序框图直接计算得到答案.
【详解】
程序在运行过程中各变量的取值如下所示:
是否继续循环 i x
循环前 1 4
第一圈 是 4 4+2
第二圈 是 7 4+2+8
第三圈 是 10 4+2+8+14
退出循环,所以打印纸上打印出的结果应是:28
故答案为:28.
【点睛】
本题考查了程序框图,意在考查学生的计算能力和理解能力.
6.设α、β为互不重合的平面,m,n是互不重合的直线,给出下列四个命题:
①若m∥n,则m∥α;
②若m⊂α,n⊂α,m∥β,n∥β,则α∥β;
③若α∥β,m⊂α,n⊂β,则m∥n;
④若α⊥β,α∩β=m,n⊂α,m⊥n,则n⊥β;
其中正确命题的序号为_____.
【答案】④
【解析】根据直线和平面,平面和平面的位置关系依次判断每个选项得到答案.
【详解】
对于①,当m∥n时,由直线与平面平行的定义和判定定理,不能得出m∥α,①错误;
对于②,当m⊂α,n⊂α,且m∥β,n∥β时,由两平面平行的判定定理,不能得出α∥β,②错误;
对于③,当α∥β,且m⊂α,n⊂β时,由两平面平行的性质定理,不能得出m∥n,③错误;
对于④,当α⊥β,且α∩β=m,n⊂α,m⊥n时,由两平面垂直的性质定理,能够得出n⊥β,④正确;
综上知,正确命题的序号是④.
故答案为:④.
【点睛】
本题考查了直线和平面,平面和平面的位置关系,意在考查学生的空间想象能力和推断能力.
7.已知函数f(x)=若关于x的方程f(x)=kx有两个不同的实根,则实数k的取值范围是________.
【答案】
【解析】由图可知,当直线y=kx在直线OA与x轴(不含它们)之间时,y=kx与y=f(x)的图像有两个不同交点,即方程有两个不相同的实根.
8.已知关于x的不等式(ax﹣a2﹣4)(x﹣4)>0的解集为A,且A中共含有n个整数,则当n最小时实数a的值为_____.
【答案】-2
【解析】讨论三种情况,a<0时,根据均值不等式得到a(﹣a)≤﹣24,计算等号成立的条件得到答案.
【详解】
已知关于x的不等式(ax﹣a2﹣4)(x﹣4)>0,
①a<0时,[x﹣(a)](x﹣4)<0,其中a0,
故解集为(a,4),
由于a(﹣a)≤﹣24,
当且仅当﹣a,即a=﹣2时取等号,
∴a的最大值为﹣4,当且仅当a4时,A中共含有最少个整数,此时实数a的值为﹣2;
②a=0时,﹣4(x﹣4)>0,解集为(﹣∞,4),整数解有无穷多,故a=0不符合条件;
③a>0时,[x﹣(a)](x﹣4)>0,其中a4,
∴故解集为(﹣∞,4)∪(a,+∞),整数解有无穷多,故a>0不符合条件;
综上所述,a=﹣2.
故答案为:﹣2.
【点睛】
本题考查了解不等式,均值不等式,意在考查学生的计算能力和综合应用能力.
9.已知双曲线(a>0,b>0)的两个焦点为、,点P是第一象限内双曲线上的点,且,tan∠PF2F1=﹣2,则双曲线的离心率为_____.
【答案】
【解析】根据正弦定理得,根据余弦定理得2PF1•PF2cos∠F1PF23,联立方程得到,计算得到答案.
【详解】
∵△PF1F2中,sin∠PF1F2═,sin∠PF1F2═,∴由正弦定理得,①
又∵,tan∠PF2F1=﹣2,
∴tan∠F1PF2=﹣tan(∠PF2F1+∠PF1F2),可得cos∠F1PF2,
△PF1F2中用余弦定理,得2PF1•PF2cos∠F1PF23,②
①②联解,得,可得,
∴双曲线的,结合,得离心率.
故答案为:.
【点睛】
本题考查了双曲线离心率,意在考查学生的计算能力和转化能力.
10.记Sk=1k+2k+3k+……+nk,当k=1,2,3,……时,观察下列等式:S1n2n,S2n3n2n,S3n4n3n2,……S5=An6n5n4+Bn2,…可以推测,A﹣B=_____.
【答案】
【解析】观察知各等式右边各项的系数和为1,最高次项的系数为该项次数的倒数,据此计算得到答案.
【详解】
根据所给的已知等式得到:各等式右边各项的系数和为1,
最高次项的系数为该项次数的倒数,
∴A,A1,解得B,所以A﹣B.
故答案为:.
【点睛】
本题考查了归纳推理,意在考查学生的推理能力.
11.设函数,若对于任意的,∈[2,,≠,不等式恒成立,则实数a的取值范围是 .
【答案】
【解析】试题分析:由题意得函数在[2,上单调递增,当时在[2,上单调递增;当时在上单调递增;在上单调递减,因此实数a的取值范围是
【考点】函数单调性
12.已知平面向量,,满足||=1,||=2,,的夹角等于,且()•()=0,则||的取值范围是_____.
【答案】
【解析】计算得到||,||cosα﹣1,解得cosα,根据三角函数的有界性计算范围得到答案.
【详解】
由()•()=0 可得 ()•||•||cosα﹣1×2cos||•||cosα﹣1,α为与的夹角.
再由 2•1+4+2×1×2cos7 可得||,
∴||cosα﹣1,解得cosα.
∵0≤α≤π,∴﹣1≤cosα≤1,∴1,即||+1≤0,解得 ||,
故答案为.
【点睛】
本题考查了向量模的范围,意在考查学生的计算能力,利用三角函数的有界性是解题的关键.
13.在平面直角坐标系xOy中,直角三角形ABC的三个顶点都在椭圆上,其中A(0,1)为直角顶点.若该三角形的面积的最大值为,则实数a的值为_____.
【答案】3
【解析】设直线AB的方程为y=kx+1,则直线AC的方程可设为yx+1,(k≠0),联立方程得到B(,),故S,令t,得S,利用均值不等式得到答案.
【详解】
设直线AB的方程为y=kx+1,则直线AC的方程可设为yx+1,(k≠0)
由消去y,得(1+a2k2)x2+2a2kx=0,所以x=0或x
∵A的坐标(0,1),∴B的坐标为(,k•1),即B(,),
因此AB•,
同理可得:AC•.
∴Rt△ABC的面积为SAB•AC•
令t,得S.
∵t2,∴S△ABC.
当且仅当,即t时,△ABC的面积S有最大值为.
解之得a=3或a.
∵a时,t2不符合题意,∴a=3.
故答案为:3.
【点睛】
本题考查了椭圆内三角形面积的最值问题,意在考查学生的计算能力和转化能力.
14.设f(x)=etx(t>0),过点P(t,0)且平行于y轴的直线与曲线C:y=f(x)的交点为Q,曲线C过点Q的切线交x轴于点R,若S(1,f(1)),则△PRS的面积的最小值是_____.
【答案】
【解析】计算R(t,0),PR=t﹣(t),△PRS的面积为S,导数S′,由S′=0得t=1,根据函数的单调性得到最值.
【详解】
∵PQ∥y轴,P(t,0),∴Q(t,f(t))即Q(t,),
又f(x)=etx(t>0)的导数f′(x)=tetx,∴过Q的切线斜率k=t,
设R(r,0),则k,∴r=t,
即R(t,0),PR=t﹣(t),
又S(1,f(1))即S(1,et),∴△PRS的面积为S,
导数S′,由S′=0得t=1,
当t>1时,S′>0,当0<t<1时,S′<0,∴t=1为极小值点,也为最小值点,
∴△PRS的面积的最小值为.
故答案为:.
【点睛】
本题考查了利用导数求面积的最值问题,意在考查学生的计算能力和应用能力.
二、解答题
15.在三角形ABC中,角A,B,C的对边分别为a,b,c,若,角为钝角,
(1)求的值;
(2)求边的长.
【答案】(1) (2)
【解析】(1)由,分别求得,得到答案;(2)利用正弦定理得到,利用余弦定理解出.
【详解】
(1)因为角 为钝角, ,所以 ,
又 ,所以 ,
且 ,
所以
.
(2)因为 ,且 ,所以 ,
又 ,
则 ,
所以 .
16.如图,四棱锥V﹣ABCD中,底面ABCD是菱形,对角线AC与BD交于点O,VO⊥平面ABCD,E是棱VC的中点.
(1)求证:VA∥平面BDE;
(2)求证:平面VAC⊥平面BDE.
【答案】(1)见解析(2)见解析
【解析】(1)连结OE,证明VA∥OE得到答案.
(2)证明VO⊥BD,BD⊥AC,得到BD⊥平面VAC,得到证明.
【详解】
(1)连结OE.因为底面ABCD是菱形,所以O为AC的中点,
又因为E是棱VC的中点,所以VA∥OE,又因为OE⊂平面BDE,VA⊄平面BDE,
所以VA∥平面BDE;
(2)因为VO⊥平面ABCD,又BD⊂平面ABCD,所以VO⊥BD,
因为底面ABCD是菱形,所以BD⊥AC,又VO∩AC=O,VO,AC⊂平面VAC,
所以BD⊥平面VAC.又因为BD⊂平面BDE,所以平面VAC⊥平面BDE.
【点睛】
本题考查了线面平行,面面垂直,意在考查学生的推断能力和空间想象能力.
17.已知半径为5的圆的圆心在x轴上,圆心的横坐标是整数,且与直线4x+3y﹣29=0相切.
(1)求圆的方程;
(2)设直线ax﹣y+5=0(a>0)与圆相交于A,B两点,求实数a的取值范围;
(3)在(2)的条件下,是否存在实数a,使得弦AB的垂直平分线l过点P(﹣2,4),若存在,求出实数a的值;若不存在,请说明理由.
【答案】(1)(x﹣1)2+y2=25.(2)().(3)存在,
【解析】(1)设圆心为M(m,0),根据相切得到,计算得到答案.
(2)把直线ax﹣y+5=0,代入圆的方程,计算△=4(5a﹣1)2﹣4(a2+1)>0得到答案.
(3)l的方程为,即x+ay+2﹣4a=0,过点M(1,0),计算得到答案.
【详解】
(1)设圆心为M(m,0)(m∈Z).由于圆与直线4x+3y﹣29=0相切,且半径为5,
所以 ,即|4m﹣29|=25.因为m为整数,故m=1.
故所求圆的方程为(x﹣1)2+y2=25.
(2)把直线ax﹣y+5=0,即y=ax+5,代入圆的方程,消去y,
整理得(a2+1)x2+2(5a﹣1)x+1=0,
由于直线ax﹣y+5=0交圆于A,B两点,故△=4(5a﹣1)2﹣4(a2+1)>0,
即12a2﹣5a>0,由于a>0,解得a,所以实数a的取值范围是().
(3)设符合条件的实数a存在,则直线l的斜率为,
l的方程为,即x+ay+2﹣4a=0,
由于l垂直平分弦AB,故圆心M(1,0)必在l上,
所以1+0+2﹣4a=0,解得.由于,故存在实数
使得过点P(﹣2,4)的直线l垂直平分弦AB.
【点睛】
本题考查了直线和圆的位置关系,意在考查学生的计算能力和转化能力.
18.如图,两座建筑物AB,CD的底部都在同一个水平面上,且均与水平面垂直,它们的高度分别是10m和20m,从建筑物AB的顶部A看建筑物CD的视角∠CAD=60°.
(1)求BC的长度;
(2)在线段BC上取一点P(点P与点B,C不重合),从点P看这两座建筑物的视角分别为∠APB=α,∠DPC=β,问点P在何处时,α+β最小?
【答案】(1);(2)当BP为cm时,α+β取得最小值.
【解析】(1)作AE⊥CD,垂足为E,则CE=10,DE=10,设BC=x,根据得到,解得答案.
(2)设BP=t,则,故,设,求导得到函数单调性,得到最值.
【详解】
(1)作AE⊥CD,垂足为E,则CE=10,DE=10,设BC=x,
则,
化简得,解之得,或(舍),
(2)设BP=t,则,
,
设,,
令f'(t)=0,因为,得,
当时,f'(t)<0,f(t)是减函数;
当时,f'(t)>0,f(t)是增函数,
所以,当时,f(t)取得最小值,即tan(α+β)取得最小值,
因为恒成立,所以f(t)<0,
所以tan(α+β)<0,,
因为y=tanx在上是增函数,所以当时,α+β取得最小值.
【点睛】
本题考查了三角恒等变换,利用导数求最值,意在考查学生的计算能力和应用能力.
19.设首项为1的正项数列{an}的前n项和为Sn,数列的前n项和为Tn,且,其中p为常数.
(1)求p的值;
(2)求证:数列{an}为等比数列;
(3)证明:“数列an,2xan+1,2yan+2成等差数列,其中x、y均为整数”的充要条件是“x=1,且y=2”.
【答案】(1)p=2;(2)见解析(3)见解析
【解析】(1)取n=1时,由得p=0或2,计算排除p=0的情况得到答案.
(2),则,相减得到3an+1=4﹣Sn+1﹣Sn,再化简得到,得到证明.
(3)分别证明充分性和必要性,假设an,2xan+1,2yan+2成等差数列,其中x、y均为整数,计算化简得2x﹣2y﹣2=1,设k=x﹣(y﹣2),计算得到k=1,得到答案.
【详解】
(1)n=1时,由得p=0或2,若p=0时,,
当n=2时,,解得a2=0或,
而an>0,所以p=0不符合题意,故p=2;
(2)当p=2时,①,则②,
②﹣①并化简得3an+1=4﹣Sn+1﹣Sn③,则3an+2=4﹣Sn+2﹣Sn+1④,
④﹣③得(n∈N),
又因为,所以数列{an}是等比数列,且;
(3)充分性:若x=1,y=2,由知an,2xan+1,2yan+2依次为,,,
满足,即an,2xan+1,2yan+2成等差数列;
必要性:假设an,2xan+1,2yan+2成等差数列,其中x、y均为整数,又,
所以,化简得2x﹣2y﹣2=1,
显然x>y﹣2,设k=x﹣(y﹣2),
因为x、y均为整数,所以当k≥2时,2x﹣2y﹣2>1或2x﹣2y﹣2<1,
故当k=1,且当x=1,且y﹣2=0时上式成立,即证.
【点睛】
本题考查了根据数列求参数,证明等比数列,充要条件,意在考查学生的综合应用能力.
20.(本小题满分16分)已知函数,,且.
(1)当时,求函数的减区间;
(2)求证:方程有两个不相等的实数根;
(3)若方程的两个实数根是,试比较,与的大小,并说明理由.
【答案】(1)(2)详见解析(3)
【解析】试题分析:(1)当时,,由得减区间;(2)因为,所以,因为所以,方程有两个不相等的实数根;(3)因为,,所以
试题解析:(1)减区间; 4分
(2)法1:, 6分
,, 8分
所以,方程有两个不相等的实数根; 10分
法2:, 6分
, 8分
是开口向上的二次函数,
所以,方程有两个不相等的实数根; 10分
(3)因为, 12分
, 14分
又在和增,在减,
所以. 16分
【考点】利用导数求函数减区间,二次函数与二次方程关系
21.试求曲线y=sinx在矩阵MN变换下的函数解析式,其中M,N.
【答案】y=2sin2x.
【解析】计算MN,计算得到函数表达式.
【详解】
∵M,N,∴MN,
∴在矩阵MN变换下,→
∴曲线y=sinx在矩阵MN变换下的函数解析式为y=2sin2x.
【点睛】
本题考查了矩阵变换,意在考查学生的计算能力.
22.已知直线l的极坐标方程为,圆C的参数方程为(为参数).
(1)请分别把直线l和圆C的方程化为直角坐标方程;
(2)求直线l被圆截得的弦长.
【答案】(1).x2+y2=100.(2)16
【解析】(1)直接利用极坐标方程和参数方程公式化简得到答案.
(2)圆心到直线的距离为,故弦长为得到答案.
【详解】
(1),即,即,
即.
,故.
(2)圆心到直线的距离为,故弦长为.
【点睛】
本题考查了极坐标方程和参数方程,圆的弦长,意在考查学生的计算能力和转化能力.
23.在如图所示的几何体中,四边形ABCD为矩形,平面ABEF⊥平面ABCD,EF∥AB,∠BAF=90°,AD=2,AB=AF=2EF=2,点P在棱DF上.
(1)若P是DF的中点,求异面直线BE与CP所成角的余弦值;
(2)若二面角D﹣AP﹣C的正弦值为,求PF的长度.
【答案】(1).(2).
【解析】(1)以A为原点,AB为x轴,AD为y轴,AF为z轴,建立空间直角坐标系,则(﹣1,0,2),(﹣2,﹣1,1),计算夹角得到答案.
(2)设,0≤λ≤1,计算P(0,2λ,2﹣2λ),计算平面APC的法向量(1,﹣1,),平面ADF的法向量(1,0,0),根据夹角公式计算得到答案.
【详解】
(1)∵BAF=90°,∴AF⊥AB,
又∵平面ABEF⊥平面ABCD,且平面ABEF∩平面ABCD=AB,
∴AF⊥平面ABCD,又四边形ABCD为矩形,
∴以A为原点,AB为x轴,AD为y轴,AF为z轴,建立空间直角坐标系,
∵AD=2,AB=AF=2EF=2,P是DF的中点,
∴B(2,0,0),E(1,0,2),C(2,2,0),P(0,1,1),
(﹣1,0,2),(﹣2,﹣1,1),
设异面直线BE与CP所成角的平面角为θ,
则cosθ,
∴异面直线BE与CP所成角的余弦值为.
(2)A(0,0,0),C(2,2,0),F(0,0,2),D(0,2,0),
设P(a,b,c),,0≤λ≤1,即(a,b,c﹣2)=λ(0,2,﹣2),
解得a=0,b=2λ,c=2﹣2λ,∴P(0,2λ,2﹣2λ),
(0,2λ,2﹣2λ),(2,2,0),
设平面APC的法向量(x,y,z),
则,取x=1,得(1,﹣1,),
平面ADP的法向量(1,0,0),
∵二面角D﹣AP﹣C的正弦值为,
∴|cos|,
解得,∴P(0,,),
∴PF的长度|PF|.
【点睛】
本题考查了异面直线夹角,根据二面角求长度,意在考查学生的空间想象能力和计算能力.
24.
甲、乙、丙三名射击运动员射中目标的概率分别为,三人各射击一次,击中目标的次数记为.
(1)求的分布列及数学期望;
(2)在概率(=0,1,2,3)中, 若的值最大, 求实数的取值范围.
【答案】(1),ξ的分布列为
ξ
0
1
2
3
P
(1-a)2
(1-a2)
(2a-a2)
(2)
【解析】(1)P(ξ)是“ξ个人命中,3-ξ个人未命中”的概率.其中ξ的可能取值为0、1、2、3.
P(ξ=0)=(1-a)2=(1-a)2;
P(ξ=1)=·(1-a)2+a(1-a)=(1-a2);
P(ξ=2)=·a(1-a)+a2=(2a-a2);
P(ξ=3)=·a2=.
所以ξ的分布列为
ξ
0
1
2
3
P
(1-a)2
(1-a2)
(2a-a2)
ξ的数学期望为
E(ξ)=0×(1-a)2+1×(1-a2)+2×(2a-a2)+3×=.
(2)P(ξ=1)-P(ξ=0)=[(1-a2)-(1-a)2]=a(1-a);
P(ξ=1)-P(ξ=2)=[(1-a2)-(2a-a2)]=;
P(ξ=1)-P(ξ=3)=[(1-a2)-a2]=.
由和0<a<1,得0<a≤,即a的取值范围是.
一、填空题
1.记复数z=a+bi(i为虚数单位)的共轭复数为,已知z=2+i,则_____.
【答案】3﹣4i
【解析】计算得到z2=(2+i)2=3+4i,再计算得到答案.
【详解】
∵z=2+i,∴z2=(2+i)2=3+4i,则.
故答案为:3﹣4i.
【点睛】
本题考查了复数的运算,共轭复数,意在考查学生的计算能力.
2.已知集合U={1,3,5,9},A={1,3,9},B={1,9},则∁U(A∪B)=________.
【答案】{5}
【解析】易得A∪B=A={1,3,9},则∁U(A∪B)={5}.
3.某校共有师生1600人,其中教师有1000人,现用分层抽样的方法,从所有师生中抽取一个容量为80的样本,则抽取学生的人数为_____.
【答案】30
【解析】直接根据分层抽样的比例关系得到答案.
【详解】
分层抽样的抽取比例为,∴抽取学生的人数为60030.
故答案为:30.
【点睛】
本题考查了分层抽样的计算,属于简单题.
4.角α的顶点在坐标原点,始边与x轴的非负半轴重合,终边经过点P(1,2),则sin(π﹣α)的值是_____.
【答案】
【解析】计算sinα,再利用诱导公式计算得到答案.
【详解】
由题意可得x=1,y=2,r,∴sinα,∴sin(π﹣α)=sinα.
故答案为:.
【点睛】
本题考查了三角函数定义,诱导公式,意在考查学生的计算能力.
5.执行以下语句后,打印纸上打印出的结果应是:_____.
【答案】28
【解析】根据程序框图直接计算得到答案.
【详解】
程序在运行过程中各变量的取值如下所示:
是否继续循环 i x
循环前 1 4
第一圈 是 4 4+2
第二圈 是 7 4+2+8
第三圈 是 10 4+2+8+14
退出循环,所以打印纸上打印出的结果应是:28
故答案为:28.
【点睛】
本题考查了程序框图,意在考查学生的计算能力和理解能力.
6.设α、β为互不重合的平面,m,n是互不重合的直线,给出下列四个命题:
①若m∥n,则m∥α;
②若m⊂α,n⊂α,m∥β,n∥β,则α∥β;
③若α∥β,m⊂α,n⊂β,则m∥n;
④若α⊥β,α∩β=m,n⊂α,m⊥n,则n⊥β;
其中正确命题的序号为_____.
【答案】④
【解析】根据直线和平面,平面和平面的位置关系依次判断每个选项得到答案.
【详解】
对于①,当m∥n时,由直线与平面平行的定义和判定定理,不能得出m∥α,①错误;
对于②,当m⊂α,n⊂α,且m∥β,n∥β时,由两平面平行的判定定理,不能得出α∥β,②错误;
对于③,当α∥β,且m⊂α,n⊂β时,由两平面平行的性质定理,不能得出m∥n,③错误;
对于④,当α⊥β,且α∩β=m,n⊂α,m⊥n时,由两平面垂直的性质定理,能够得出n⊥β,④正确;
综上知,正确命题的序号是④.
故答案为:④.
【点睛】
本题考查了直线和平面,平面和平面的位置关系,意在考查学生的空间想象能力和推断能力.
7.已知函数f(x)=若关于x的方程f(x)=kx有两个不同的实根,则实数k的取值范围是________.
【答案】
【解析】由图可知,当直线y=kx在直线OA与x轴(不含它们)之间时,y=kx与y=f(x)的图像有两个不同交点,即方程有两个不相同的实根.
8.已知关于x的不等式(ax﹣a2﹣4)(x﹣4)>0的解集为A,且A中共含有n个整数,则当n最小时实数a的值为_____.
【答案】-2
【解析】讨论三种情况,a<0时,根据均值不等式得到a(﹣a)≤﹣24,计算等号成立的条件得到答案.
【详解】
已知关于x的不等式(ax﹣a2﹣4)(x﹣4)>0,
①a<0时,[x﹣(a)](x﹣4)<0,其中a0,
故解集为(a,4),
由于a(﹣a)≤﹣24,
当且仅当﹣a,即a=﹣2时取等号,
∴a的最大值为﹣4,当且仅当a4时,A中共含有最少个整数,此时实数a的值为﹣2;
②a=0时,﹣4(x﹣4)>0,解集为(﹣∞,4),整数解有无穷多,故a=0不符合条件;
③a>0时,[x﹣(a)](x﹣4)>0,其中a4,
∴故解集为(﹣∞,4)∪(a,+∞),整数解有无穷多,故a>0不符合条件;
综上所述,a=﹣2.
故答案为:﹣2.
【点睛】
本题考查了解不等式,均值不等式,意在考查学生的计算能力和综合应用能力.
9.已知双曲线(a>0,b>0)的两个焦点为、,点P是第一象限内双曲线上的点,且,tan∠PF2F1=﹣2,则双曲线的离心率为_____.
【答案】
【解析】根据正弦定理得,根据余弦定理得2PF1•PF2cos∠F1PF23,联立方程得到,计算得到答案.
【详解】
∵△PF1F2中,sin∠PF1F2═,sin∠PF1F2═,∴由正弦定理得,①
又∵,tan∠PF2F1=﹣2,
∴tan∠F1PF2=﹣tan(∠PF2F1+∠PF1F2),可得cos∠F1PF2,
△PF1F2中用余弦定理,得2PF1•PF2cos∠F1PF23,②
①②联解,得,可得,
∴双曲线的,结合,得离心率.
故答案为:.
【点睛】
本题考查了双曲线离心率,意在考查学生的计算能力和转化能力.
10.记Sk=1k+2k+3k+……+nk,当k=1,2,3,……时,观察下列等式:S1n2n,S2n3n2n,S3n4n3n2,……S5=An6n5n4+Bn2,…可以推测,A﹣B=_____.
【答案】
【解析】观察知各等式右边各项的系数和为1,最高次项的系数为该项次数的倒数,据此计算得到答案.
【详解】
根据所给的已知等式得到:各等式右边各项的系数和为1,
最高次项的系数为该项次数的倒数,
∴A,A1,解得B,所以A﹣B.
故答案为:.
【点睛】
本题考查了归纳推理,意在考查学生的推理能力.
11.设函数,若对于任意的,∈[2,,≠,不等式恒成立,则实数a的取值范围是 .
【答案】
【解析】试题分析:由题意得函数在[2,上单调递增,当时在[2,上单调递增;当时在上单调递增;在上单调递减,因此实数a的取值范围是
【考点】函数单调性
12.已知平面向量,,满足||=1,||=2,,的夹角等于,且()•()=0,则||的取值范围是_____.
【答案】
【解析】计算得到||,||cosα﹣1,解得cosα,根据三角函数的有界性计算范围得到答案.
【详解】
由()•()=0 可得 ()•||•||cosα﹣1×2cos||•||cosα﹣1,α为与的夹角.
再由 2•1+4+2×1×2cos7 可得||,
∴||cosα﹣1,解得cosα.
∵0≤α≤π,∴﹣1≤cosα≤1,∴1,即||+1≤0,解得 ||,
故答案为.
【点睛】
本题考查了向量模的范围,意在考查学生的计算能力,利用三角函数的有界性是解题的关键.
13.在平面直角坐标系xOy中,直角三角形ABC的三个顶点都在椭圆上,其中A(0,1)为直角顶点.若该三角形的面积的最大值为,则实数a的值为_____.
【答案】3
【解析】设直线AB的方程为y=kx+1,则直线AC的方程可设为yx+1,(k≠0),联立方程得到B(,),故S,令t,得S,利用均值不等式得到答案.
【详解】
设直线AB的方程为y=kx+1,则直线AC的方程可设为yx+1,(k≠0)
由消去y,得(1+a2k2)x2+2a2kx=0,所以x=0或x
∵A的坐标(0,1),∴B的坐标为(,k•1),即B(,),
因此AB•,
同理可得:AC•.
∴Rt△ABC的面积为SAB•AC•
令t,得S.
∵t2,∴S△ABC.
当且仅当,即t时,△ABC的面积S有最大值为.
解之得a=3或a.
∵a时,t2不符合题意,∴a=3.
故答案为:3.
【点睛】
本题考查了椭圆内三角形面积的最值问题,意在考查学生的计算能力和转化能力.
14.设f(x)=etx(t>0),过点P(t,0)且平行于y轴的直线与曲线C:y=f(x)的交点为Q,曲线C过点Q的切线交x轴于点R,若S(1,f(1)),则△PRS的面积的最小值是_____.
【答案】
【解析】计算R(t,0),PR=t﹣(t),△PRS的面积为S,导数S′,由S′=0得t=1,根据函数的单调性得到最值.
【详解】
∵PQ∥y轴,P(t,0),∴Q(t,f(t))即Q(t,),
又f(x)=etx(t>0)的导数f′(x)=tetx,∴过Q的切线斜率k=t,
设R(r,0),则k,∴r=t,
即R(t,0),PR=t﹣(t),
又S(1,f(1))即S(1,et),∴△PRS的面积为S,
导数S′,由S′=0得t=1,
当t>1时,S′>0,当0<t<1时,S′<0,∴t=1为极小值点,也为最小值点,
∴△PRS的面积的最小值为.
故答案为:.
【点睛】
本题考查了利用导数求面积的最值问题,意在考查学生的计算能力和应用能力.
二、解答题
15.在三角形ABC中,角A,B,C的对边分别为a,b,c,若,角为钝角,
(1)求的值;
(2)求边的长.
【答案】(1) (2)
【解析】(1)由,分别求得,得到答案;(2)利用正弦定理得到,利用余弦定理解出.
【详解】
(1)因为角 为钝角, ,所以 ,
又 ,所以 ,
且 ,
所以
.
(2)因为 ,且 ,所以 ,
又 ,
则 ,
所以 .
16.如图,四棱锥V﹣ABCD中,底面ABCD是菱形,对角线AC与BD交于点O,VO⊥平面ABCD,E是棱VC的中点.
(1)求证:VA∥平面BDE;
(2)求证:平面VAC⊥平面BDE.
【答案】(1)见解析(2)见解析
【解析】(1)连结OE,证明VA∥OE得到答案.
(2)证明VO⊥BD,BD⊥AC,得到BD⊥平面VAC,得到证明.
【详解】
(1)连结OE.因为底面ABCD是菱形,所以O为AC的中点,
又因为E是棱VC的中点,所以VA∥OE,又因为OE⊂平面BDE,VA⊄平面BDE,
所以VA∥平面BDE;
(2)因为VO⊥平面ABCD,又BD⊂平面ABCD,所以VO⊥BD,
因为底面ABCD是菱形,所以BD⊥AC,又VO∩AC=O,VO,AC⊂平面VAC,
所以BD⊥平面VAC.又因为BD⊂平面BDE,所以平面VAC⊥平面BDE.
【点睛】
本题考查了线面平行,面面垂直,意在考查学生的推断能力和空间想象能力.
17.已知半径为5的圆的圆心在x轴上,圆心的横坐标是整数,且与直线4x+3y﹣29=0相切.
(1)求圆的方程;
(2)设直线ax﹣y+5=0(a>0)与圆相交于A,B两点,求实数a的取值范围;
(3)在(2)的条件下,是否存在实数a,使得弦AB的垂直平分线l过点P(﹣2,4),若存在,求出实数a的值;若不存在,请说明理由.
【答案】(1)(x﹣1)2+y2=25.(2)().(3)存在,
【解析】(1)设圆心为M(m,0),根据相切得到,计算得到答案.
(2)把直线ax﹣y+5=0,代入圆的方程,计算△=4(5a﹣1)2﹣4(a2+1)>0得到答案.
(3)l的方程为,即x+ay+2﹣4a=0,过点M(1,0),计算得到答案.
【详解】
(1)设圆心为M(m,0)(m∈Z).由于圆与直线4x+3y﹣29=0相切,且半径为5,
所以 ,即|4m﹣29|=25.因为m为整数,故m=1.
故所求圆的方程为(x﹣1)2+y2=25.
(2)把直线ax﹣y+5=0,即y=ax+5,代入圆的方程,消去y,
整理得(a2+1)x2+2(5a﹣1)x+1=0,
由于直线ax﹣y+5=0交圆于A,B两点,故△=4(5a﹣1)2﹣4(a2+1)>0,
即12a2﹣5a>0,由于a>0,解得a,所以实数a的取值范围是().
(3)设符合条件的实数a存在,则直线l的斜率为,
l的方程为,即x+ay+2﹣4a=0,
由于l垂直平分弦AB,故圆心M(1,0)必在l上,
所以1+0+2﹣4a=0,解得.由于,故存在实数
使得过点P(﹣2,4)的直线l垂直平分弦AB.
【点睛】
本题考查了直线和圆的位置关系,意在考查学生的计算能力和转化能力.
18.如图,两座建筑物AB,CD的底部都在同一个水平面上,且均与水平面垂直,它们的高度分别是10m和20m,从建筑物AB的顶部A看建筑物CD的视角∠CAD=60°.
(1)求BC的长度;
(2)在线段BC上取一点P(点P与点B,C不重合),从点P看这两座建筑物的视角分别为∠APB=α,∠DPC=β,问点P在何处时,α+β最小?
【答案】(1);(2)当BP为cm时,α+β取得最小值.
【解析】(1)作AE⊥CD,垂足为E,则CE=10,DE=10,设BC=x,根据得到,解得答案.
(2)设BP=t,则,故,设,求导得到函数单调性,得到最值.
【详解】
(1)作AE⊥CD,垂足为E,则CE=10,DE=10,设BC=x,
则,
化简得,解之得,或(舍),
(2)设BP=t,则,
,
设,,
令f'(t)=0,因为,得,
当时,f'(t)<0,f(t)是减函数;
当时,f'(t)>0,f(t)是增函数,
所以,当时,f(t)取得最小值,即tan(α+β)取得最小值,
因为恒成立,所以f(t)<0,
所以tan(α+β)<0,,
因为y=tanx在上是增函数,所以当时,α+β取得最小值.
【点睛】
本题考查了三角恒等变换,利用导数求最值,意在考查学生的计算能力和应用能力.
19.设首项为1的正项数列{an}的前n项和为Sn,数列的前n项和为Tn,且,其中p为常数.
(1)求p的值;
(2)求证:数列{an}为等比数列;
(3)证明:“数列an,2xan+1,2yan+2成等差数列,其中x、y均为整数”的充要条件是“x=1,且y=2”.
【答案】(1)p=2;(2)见解析(3)见解析
【解析】(1)取n=1时,由得p=0或2,计算排除p=0的情况得到答案.
(2),则,相减得到3an+1=4﹣Sn+1﹣Sn,再化简得到,得到证明.
(3)分别证明充分性和必要性,假设an,2xan+1,2yan+2成等差数列,其中x、y均为整数,计算化简得2x﹣2y﹣2=1,设k=x﹣(y﹣2),计算得到k=1,得到答案.
【详解】
(1)n=1时,由得p=0或2,若p=0时,,
当n=2时,,解得a2=0或,
而an>0,所以p=0不符合题意,故p=2;
(2)当p=2时,①,则②,
②﹣①并化简得3an+1=4﹣Sn+1﹣Sn③,则3an+2=4﹣Sn+2﹣Sn+1④,
④﹣③得(n∈N),
又因为,所以数列{an}是等比数列,且;
(3)充分性:若x=1,y=2,由知an,2xan+1,2yan+2依次为,,,
满足,即an,2xan+1,2yan+2成等差数列;
必要性:假设an,2xan+1,2yan+2成等差数列,其中x、y均为整数,又,
所以,化简得2x﹣2y﹣2=1,
显然x>y﹣2,设k=x﹣(y﹣2),
因为x、y均为整数,所以当k≥2时,2x﹣2y﹣2>1或2x﹣2y﹣2<1,
故当k=1,且当x=1,且y﹣2=0时上式成立,即证.
【点睛】
本题考查了根据数列求参数,证明等比数列,充要条件,意在考查学生的综合应用能力.
20.(本小题满分16分)已知函数,,且.
(1)当时,求函数的减区间;
(2)求证:方程有两个不相等的实数根;
(3)若方程的两个实数根是,试比较,与的大小,并说明理由.
【答案】(1)(2)详见解析(3)
【解析】试题分析:(1)当时,,由得减区间;(2)因为,所以,因为所以,方程有两个不相等的实数根;(3)因为,,所以
试题解析:(1)减区间; 4分
(2)法1:, 6分
,, 8分
所以,方程有两个不相等的实数根; 10分
法2:, 6分
, 8分
是开口向上的二次函数,
所以,方程有两个不相等的实数根; 10分
(3)因为, 12分
, 14分
又在和增,在减,
所以. 16分
【考点】利用导数求函数减区间,二次函数与二次方程关系
21.试求曲线y=sinx在矩阵MN变换下的函数解析式,其中M,N.
【答案】y=2sin2x.
【解析】计算MN,计算得到函数表达式.
【详解】
∵M,N,∴MN,
∴在矩阵MN变换下,→
∴曲线y=sinx在矩阵MN变换下的函数解析式为y=2sin2x.
【点睛】
本题考查了矩阵变换,意在考查学生的计算能力.
22.已知直线l的极坐标方程为,圆C的参数方程为(为参数).
(1)请分别把直线l和圆C的方程化为直角坐标方程;
(2)求直线l被圆截得的弦长.
【答案】(1).x2+y2=100.(2)16
【解析】(1)直接利用极坐标方程和参数方程公式化简得到答案.
(2)圆心到直线的距离为,故弦长为得到答案.
【详解】
(1),即,即,
即.
,故.
(2)圆心到直线的距离为,故弦长为.
【点睛】
本题考查了极坐标方程和参数方程,圆的弦长,意在考查学生的计算能力和转化能力.
23.在如图所示的几何体中,四边形ABCD为矩形,平面ABEF⊥平面ABCD,EF∥AB,∠BAF=90°,AD=2,AB=AF=2EF=2,点P在棱DF上.
(1)若P是DF的中点,求异面直线BE与CP所成角的余弦值;
(2)若二面角D﹣AP﹣C的正弦值为,求PF的长度.
【答案】(1).(2).
【解析】(1)以A为原点,AB为x轴,AD为y轴,AF为z轴,建立空间直角坐标系,则(﹣1,0,2),(﹣2,﹣1,1),计算夹角得到答案.
(2)设,0≤λ≤1,计算P(0,2λ,2﹣2λ),计算平面APC的法向量(1,﹣1,),平面ADF的法向量(1,0,0),根据夹角公式计算得到答案.
【详解】
(1)∵BAF=90°,∴AF⊥AB,
又∵平面ABEF⊥平面ABCD,且平面ABEF∩平面ABCD=AB,
∴AF⊥平面ABCD,又四边形ABCD为矩形,
∴以A为原点,AB为x轴,AD为y轴,AF为z轴,建立空间直角坐标系,
∵AD=2,AB=AF=2EF=2,P是DF的中点,
∴B(2,0,0),E(1,0,2),C(2,2,0),P(0,1,1),
(﹣1,0,2),(﹣2,﹣1,1),
设异面直线BE与CP所成角的平面角为θ,
则cosθ,
∴异面直线BE与CP所成角的余弦值为.
(2)A(0,0,0),C(2,2,0),F(0,0,2),D(0,2,0),
设P(a,b,c),,0≤λ≤1,即(a,b,c﹣2)=λ(0,2,﹣2),
解得a=0,b=2λ,c=2﹣2λ,∴P(0,2λ,2﹣2λ),
(0,2λ,2﹣2λ),(2,2,0),
设平面APC的法向量(x,y,z),
则,取x=1,得(1,﹣1,),
平面ADP的法向量(1,0,0),
∵二面角D﹣AP﹣C的正弦值为,
∴|cos|,
解得,∴P(0,,),
∴PF的长度|PF|.
【点睛】
本题考查了异面直线夹角,根据二面角求长度,意在考查学生的空间想象能力和计算能力.
24.
甲、乙、丙三名射击运动员射中目标的概率分别为,三人各射击一次,击中目标的次数记为.
(1)求的分布列及数学期望;
(2)在概率(=0,1,2,3)中, 若的值最大, 求实数的取值范围.
【答案】(1),ξ的分布列为
ξ
0
1
2
3
P
(1-a)2
(1-a2)
(2a-a2)
(2)
【解析】(1)P(ξ)是“ξ个人命中,3-ξ个人未命中”的概率.其中ξ的可能取值为0、1、2、3.
P(ξ=0)=(1-a)2=(1-a)2;
P(ξ=1)=·(1-a)2+a(1-a)=(1-a2);
P(ξ=2)=·a(1-a)+a2=(2a-a2);
P(ξ=3)=·a2=.
所以ξ的分布列为
ξ
0
1
2
3
P
(1-a)2
(1-a2)
(2a-a2)
ξ的数学期望为
E(ξ)=0×(1-a)2+1×(1-a2)+2×(2a-a2)+3×=.
(2)P(ξ=1)-P(ξ=0)=[(1-a2)-(1-a)2]=a(1-a);
P(ξ=1)-P(ξ=2)=[(1-a2)-(2a-a2)]=;
P(ξ=1)-P(ξ=3)=[(1-a2)-a2]=.
由和0<a<1,得0<a≤,即a的取值范围是.
相关资料
更多