![2020届江西省新余市第一中学高三(补习班)上学期第三次模拟考试数学(文)试题第1页](http://img-preview.51jiaoxi.com/3/3/5617924/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2020届江西省新余市第一中学高三(补习班)上学期第三次模拟考试数学(文)试题第2页](http://img-preview.51jiaoxi.com/3/3/5617924/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2020届江西省新余市第一中学高三(补习班)上学期第三次模拟考试数学(文)试题第3页](http://img-preview.51jiaoxi.com/3/3/5617924/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2020届江西省新余市第一中学高三(补习班)上学期第三次模拟考试数学(文)试题
展开江西省新余一中补习年级第三次模拟考试数学(文)试题命题人:数学备课组 审题人:数学备课组1、.已知集合,,则······················································( ) A. B. C. D. 2、.命题,,则为······················································( ) A. , B. , C. , D. ,3、,若,则下列结论中正确的是( B )A. B. C. D.4、.已知,,,则,,的大小关系为········································( ) A. B. C. D. 5、.为了得到函数的图像,只需把的图像上所有的点····························( ) A. 向左平行移动个单位长度 B. 向右平行移动个单位长度 C. 向右平行移动个单位长度 D. 向左平行移动个单位长度 6、.函数的图像大致是··················································( ) 7、.在中,“”是“”的······················································( ) A. 充要条件 B. 充分条件 C. 必要条件 D. 非充分非必要条件 8、已知奇函数满足,当时,,则···········································( ) A. B. C. D. 9、.已知直线的图像恒在曲线的图像上方,则的取值范围是························( ) A. B. C. D. 10、.定义在上的函数满足,且对任意的都有(其中为的导数),则下列一定判断正确的是( ) A. B. C. D. 11、.已知的内角、、的对边分别为、、,为内一点,若分别满足下列四个条件:①;②;③;④;则点分别为的·······················································( ) A. 外心、内心、垂心、重心 B. 内心、外心、垂心、重心 C. 垂心、内心、重心、外心 D. 内心、垂心、外心、重心12、.函数有唯一零点,则················································( ) A. 3 B. 2 C. D. 二、填空题(每题分,计分)13、.已知,,若,则实数的值为______.14、.化简:___________.15、.已知函数是上的单调增函数,则关于的方程的实根为________16、已知函数,若有且仅有不相等的三个正数,使得,则的值为_________,若存在,使得,则的取值范围是_________.三、解答题17.已知函数(1)试判断并证明函数的奇偶性:(2)解不等式. 18、.将函数的图象向左平移个单位长度后得到的图象.(1)若为偶函数,求;(2)若在上是单调函数,求的取值范围. 19.在中,若.(1)求角A的大小;(2)若,分别求的值. 20、.在中,角的对边分别为.已知向量,向量,且.(1)求角的大小;(2)若,,求的值. 21、.已知函数与函数在处有公共的切线.(1)求实数a,b的值;(2)记,求的极值. 22、.已知函数.(1)求的单调区间;(2)设,若对任意,均存在使得,求的取值范围. 新余一中补习年级第三次模拟考试数学(文)试题 答案 命题人:数学备课组 审题人:数学备课组1、.已知集合,,则······················································( D ) A. B. C. D. 2、.命题,,则为······················································( C ) A. , B. , C. , D. ,3、,若,则下列结论中正确的是( B )A. B. C. D.4、.已知,,,则,,的大小关系为········································( A ) A. B. C. D. 5、.为了得到函数的图像,只需把的图像上所有的点····························( C ) A. 向左平行移动个单位长度 B. 向右平行移动个单位长度 C. 向右平行移动个单位长度 D. 向左平行移动个单位长度 6、.函数的图像大致是··················································( A ) 7、.在中,“”是“”的······················································(B ) A. 充要条件 B. 充分条件 C. 必要条件 D. 非充分非必要条件 8、已知奇函数满足,当时,,则···········································(A ) A. B. C. D. 9、.已知直线的图像恒在曲线的图像上方,则的取值范围是························( D ) A. B. C. D. 10、.定义在上的函数满足,且对任意的都有(其中为的导数),则下列一定判断正确的是(D) A. B. C. D. 11、.已知的内角、、的对边分别为、、,为内一点,若分别满足下列四个条件:①;②;③;④;则点分别为的·······················································( D ) A. 外心、内心、垂心、重心 B. 内心、外心、垂心、重心 C. 垂心、内心、重心、外心 D. 内心、垂心、外心、重心12、.函数有唯一零点,则················································( C ) A. 3 B. 2 C. D. 二、填空题(每题分,计分)13、.已知,,若,则实数的值为______.14、.化简:___________.15、.已知函数是上的单调增函数,则关于的方程的实根为________016、已知函数,若有且仅有不相等的三个正数,使得,则的值为_________,若存在,使得,则的取值范围是_________.③④⑤三、解答题17.已知函数(1)试判断并证明函数的奇偶性:(2)解不等式.解(1)奇函数;(2).(1)函数为奇函数,理由如下:由题意知,,则,即,解得则函数的定义域为,该定义域关于原点对称。当时,,故函数为奇函数。(2)当时,即时,由对数函数的性质可得,解得或。故不等式的解集为18、.将函数的图象向左平移个单位长度后得到的图象.(1)若为偶函数,求;(2)若在上是单调函数,求的取值范围.【答案】(1);(2)解:(1),.又为偶函数,则,,;(2),.,,在是单调函数,,. 19.在中,若.(1)求角A的大小;(2)若,分别求的值.答案】(1);(2),或,. (1)由及倍角公式可得:解得:,因为,所以.(2)由(1)知,又因为,所以,解得:,可设是方程两根,解得:,或,. 20、.在中,角的对边分别为.已知向量,向量,且.(1)求角的大小;(2)若,,求的值.【答案】(1)(2)(1),解得:(2)由余弦定理得:由正弦定理得:为锐角 21、.已知函数与函数在处有公共的切线.(1)求实数a,b的值;(2)记,求的极值.(1),.(2)极大值为;无极小值. (1),,由题意得,,解得,.(2),,,的变化情况如下表:x0+0-极大值 由表可知,的极大值为,无极小值. 22、.已知函数.(1)求的单调区间;(2)设,若对任意,均存在使得,求的取值范围.解:(1).①当时,,,在区间上,;在区间上,故的单调递增区间是,单调递减区间是.②当时,,在区间和上,;在区间上,故的单调递增区间是和,单调递减区间是.③当时,,故的单调递增区间是.④当时,,在区间和上,;区间上,故的单调递增区间是和,单调递减区间是.(2)设,由已知,在上有.12+0- 增0减 所以,由(1)可知,①当时,在上单调递增,故,所以,,解得,故.②当时,在上单调递增,在上单调递减,故.由可知,,,所以,,,综上所述,.