2020届宁夏回族自治区银川一中高三第二次模拟考试数学(理)试题(解析版)
展开2020届宁夏回族自治区银川一中高三第二次模拟考试数学(理)试题
一、单选题
1.若复数满足,则对应的点位于复平面的( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
【答案】D
【解析】利用复数模的计算、复数的除法化简复数,再根据复数的几何意义,即可得答案;
【详解】
,
对应的点,
对应的点位于复平面的第四象限.
故选:D.
【点睛】
本题考查复数模的计算、复数的除法、复数的几何意义,考查运算求解能力,属于基础题.
2.设集合,,则集合
A. B. C. D.
【答案】B
【解析】先求出集合和它的补集,然后求得集合的解集,最后取它们的交集得出结果.
【详解】
对于集合A,,解得或,故.对于集合B,,解得.故.故选B.
【点睛】
本小题主要考查一元二次不等式的解法,考查对数不等式的解法,考查集合的补集和交集的运算.对于有两个根的一元二次不等式的解法是:先将二次项系数化为正数,且不等号的另一边化为,然后通过因式分解,求得对应的一元二次方程的两个根,再利用“大于在两边,小于在中间”来求得一元二次不等式的解集.
3.已知命题p:直线a∥b,且b⊂平面α,则a∥α;命题q:直线l⊥平面α,任意直线m⊂α,则l⊥m.下列命题为真命题的是( )
A.p∧q B.p∨(非q) C.(非p)∧q D.p∧(非q)
【答案】C
【解析】首先判断出为假命题、为真命题,然后结合含有简单逻辑联结词命题的真假性,判断出正确选项.
【详解】
根据线面平行的判定,我们易得命题若直线,直线平面,则直线平面或直线在平面内,命题为假命题;
根据线面垂直的定义,我们易得命题若直线平面,则若直线与平面内的任意直线都垂直,命题为真命题.
故:A命题“”为假命题;B命题“”为假命题;C命题“”为真命题;D命题“”为假命题.
故选:C.
【点睛】
本小题主要考查线面平行与垂直有关命题真假性的判断,考查含有简单逻辑联结词的命题的真假性判断,属于基础题.
4.已知向量,是单位向量,若,则( )
A. B. C. D.
【答案】C
【解析】设,根据题意求出的值,代入向量夹角公式,即可得答案;
【详解】
设,,
是单位向量,,
,,
联立方程解得:或
当时,;
当时,;
综上所述:.
故选:C.
【点睛】
本题考查向量的模、夹角计算,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意的两种情况.
5.若,则的值为( )
A. B. C. D.
【答案】C
【解析】利用倍角公式、两角差的正弦进行化简,即可得到答案.
【详解】
,
.
故选:C.
【点睛】
本题考查三角函数恒等变换求值,考查函数与方程思想、转化与化归思想,考查运算求解能力.
6.函数的图象可能是( )
A. B.
C. D.
【答案】A
【解析】求导,判断导函数函数值的正负,从而判断函数的单调性,通过单调性判断选项.
【详解】
解:当时,,则,
若,,,
若,,,
则恒成立,
即当时,恒成立,
则在上单调递减,
故选:A.
【点睛】
本题主要考查函数的图象,可以通过函数的性质进行排除,属于中档题.
7.如图,在底面边长为1,高为2的正四棱柱中,点是平面内一点,则三棱锥的正视图与侧视图的面积之和为( )
A.2 B.3 C.4 D.5
【答案】A
【解析】根据几何体分析正视图和侧视图的形状,结合题干中的数据可计算出结果.
【详解】
由三视图的性质和定义知,三棱锥的正视图与侧视图都是底边长为高为的三角形,其面积都是,正视图与侧视图的面积之和为,
故选:A.
【点睛】
本题考查几何体正视图和侧视图的面积和,解答的关键就是分析出正视图和侧视图的形状,考查空间想象能力与计算能力,属于基础题.
8.抛物线的准线与双曲线的两条渐近线所围成的三角形面积为,则的值为 ( )
A. B. C. D.
【答案】A
【解析】求得抛物线的准线方程和双曲线的渐近线方程,解得两交点,由三角形的面积公式,计算即可得到所求值.
【详解】
抛物线的准线为, 双曲线的两条渐近线为, 可得两交点为, 即有三角形的面积为,解得,故选A.
【点睛】
本题考查三角形的面积的求法,注意运用抛物线的准线方程和双曲线的渐近线方程,考查运算能力,属于基础题.
9.《九章算术》勾股章有一“引葭赴岸”问题“今有饼池径丈,葭生其中,出水两尺,引葭赴岸,适与岸齐,问水深,葭各几何?”,其意思是:有一个直径为一丈的圆柱形水池,池中心生有一颗类似芦苇的植物,露出水面两尺,若把它引向岸边,正好与岸边齐,问水有多深,该植物有多高?其中一丈等于十尺,如图若从该葭上随机取一点,则该点取自水下的概率为( )
A. B. C. D.
【答案】C
【解析】由题意知:,,设,则,在中,列勾股方程可解得,然后由得出答案.
【详解】
解:由题意知:,,设,则
在中,列勾股方程得:,解得
所以从该葭上随机取一点,则该点取自水下的概率为
故选C.
【点睛】
本题考查了几何概型中的长度型,属于基础题.
10.执行如图所示的程序框图,则输出的结果为( )
A. B. C. D.
【答案】D
【解析】循环依次为
直至结束循环,输出
,选D.
点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.
11.如图所示,在平面直角坐标系中,是椭圆的右焦点,直线与椭圆交于,两点,且,则该椭圆的离心率是( )
A. B. C. D.
【答案】A
【解析】联立直线方程与椭圆方程,解得和的坐标,然后利用向量垂直的坐标表示可得,由离心率定义可得结果.
【详解】
由,得,所以,.
由题意知,所以,.
因为,所以,所以.
所以,所以,
故选:A.
【点睛】
本题考查了直线与椭圆的交点,考查了向量垂直的坐标表示,考查了椭圆的离心率公式,属于基础题.
12.已知函数,当时,的取值范围为,则实数m的取值范围是( )
A. B. C. D.
【答案】C
【解析】求导分析函数在时的单调性、极值,可得时,满足题意,再在时,求解的x的范围,综合可得结果.
【详解】
当时,,
令,则;,则,
∴函数在单调递增,在单调递减.
∴函数在处取得极大值为,
∴时,的取值范围为,
∴
又当时,令,则,即,
∴
综上所述,的取值范围为.
故选C.
【点睛】
本题考查了利用导数分析函数值域的方法,考查了分段函数的性质,属于难题.
二、填空题
13.在一次医疗救助活动中,需要从A医院某科室的6名男医生、4名女医生中分别抽调3名男医生、2名女医生,且男医生中唯一的主任医师必须参加,则不同的选派案共有________种.(用数字作答)
【答案】
【解析】首先选派男医生中唯一的主任医师,由题意利用排列组合公式即可确定不同的选派案方法种数.
【详解】
首先选派男医生中唯一的主任医师,
然后从名男医生、名女医生中分别抽调2名男医生、名女医生,
故选派的方法为:.
故答案为.
【点睛】
解排列组合问题要遵循两个原则:一是按元素(或位置)的性质进行分类;二是按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).
14.若x,y满足,且y≥−1,则3x+y的最大值_____
【答案】5.
【解析】由约束条件作出可行域,令z=3x+y,化为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.
【详解】
由题意作出可行域如图阴影部分所示.
设,
当直线经过点时,取最大值5.
故答案为:5
【点睛】
本题考查简单的线性规划,考查数形结合的解题思想方法,是中档题.
15.在中,角所对的边分别为,,的平分线交于点D,且,则的最小值为________.
【答案】9
【解析】分析:先根据三角形面积公式得条件、再利用基本不等式求最值.
详解:由题意可知,,由角平分线性质和三角形面积公式得,化简得,因此
当且仅当时取等号,则的最小值为.
点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.
16.棱长为的正四面体与正三棱锥的底面重合,若由它们构成的多面体的顶点均在一球的球面上,则正三棱锥的内切球半径为______.
【答案】
【解析】由棱长为的正四面体求出外接球的半径,进而求出正三棱锥的高及侧棱长,可得正三棱锥的三条侧棱两两相互垂直,进而求出体积与表面积,设内切圆的半径,由等体积,求出内切圆的半径.
【详解】
由题意可知:
多面体的外接球即正四面体的外接球
作面交于,连接,如图
则,且为外接球的直径,可得
,
设三角形 的外接圆的半径为,则,解得,
设外接球的半径为,则可得,
即,解得,
设正三棱锥的高为,
因为,所以,
所以,
而,
所以正三棱锥的三条侧棱两两相互垂直,
所以,
设内切球的半径为,,
即解得:.
故答案为:.
【点睛】
本题考查多面体与球的内切和外接问题,考查转化与化归思想,考查空间想象能力、运算求解能力,求解时注意借助几何体的直观图进行分析.
三、解答题
17.已知数列的前项和为,且满足.
(1)求数列的通项公式;
(2)若,,且数列前项和为,求的取值范围.
【答案】(1)(2)
【解析】(1)由,可求,然后由时,可得,根据等比数列的通项可求
(2)由,而,利用裂项相消法可求.
【详解】
(1)当时,,解得,
当时,①
②
②①得,即,
数列是以2为首项,2为公比的等比数列,
;
(2)
∴,
∴,
,
.
【点睛】
本题考查递推公式在数列的通项求解中的应用,等比数列的通项公式、裂项求和方法,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.
18.棉花的纤维长度是评价棉花质量的重要指标,某农科所的专家在土壤环境不同的甲、乙两块实验地分别种植某品种的棉花,为了评价该品种的棉花质量,在棉花成熟后,分别从甲、乙两地的棉花中各随机抽取20根棉花纤维进行统计,结果如下表:(记纤维长度不低于300的为“长纤维”,其余为“短纤维”)
纤维长度 | |||||
甲地(根数) | 3 | 4 | 4 | 5 | 4 |
乙地(根数) | 1 | 1 | 2 | 10 | 6 |
(1)由以上统计数据,填写下面列联表,并判断能否在犯错误概率不超过0.025的前提下认为“纤维长度与土壤环境有关系”.
| 甲地 | 乙地 | 总计 |
长纤维 |
|
|
|
短纤维 |
|
|
|
总计 |
|
|
|
附:(1);
(2)临界值表;
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(2)现从上述40根纤维中,按纤维长度是否为“长纤维”还是“短纤维”采用分层抽样的方法抽取8根进行检测,在这8根纤维中,记乙地“短纤维”的根数为,求的分布列及数学期望.
【答案】(1)在犯错误概率不超过的前提下认为“纤维长度与土壤环境有关系”.(2)见解析
【解析】试题分析:(1)可以根据所给表格填出列联表,利用列联表求出,结合所给数据,应用独立性检验知识可作出判断;(2)写出的所有可能取值,并求出对应的概率,可列出分布列并进一步求出的数学期望.试题解析:(Ⅰ)根据已知数据得到如下列联表:
| 甲地 | 乙地 | 总计 |
长纤维 | 9 | 16 | 25 |
短纤维 | 11 | 4 | 15 |
总计 | 20 | 20 | 40 |
根据列联表中的数据,可得
所以,在犯错误概率不超过的前提下认为“纤维长度与土壤环境有关系”.
(Ⅱ)由表可知在8根中乙地“短纤维”的根数为,
的可能取值为:0,1,2,3,
,,
,.
∴ 的分布列为:
0 | 1 | 2 | 3 | |
∴ .
19.在底面为菱形的四棱柱中,平面.
(1)证明:平面;
(2)求二面角的正弦值.
【答案】(1)证明见解析;(2)
【解析】(1)由已知可证,即可证明结论;
(2)根据已知可证平面,建立空间直角坐标系,求出坐标,进而求出平面和平面的法向量坐标,由空间向量的二面角公式,即可求解.
【详解】
方法一:(1)依题意,且∴,
∴四边形是平行四边形,∴,
∵平面,平面,
∴平面.
(2)∵平面,∴,
∵且为的中点,∴,
∵平面且,
∴平面,
以为原点,分别以为轴、轴、轴的正方向,
建立如图所示的空间直角坐标系,
则,,,,
∴
设平面的法向量为,
则,∴,取,则.
设平面的法向量为,
则,∴,取,则.
∴,
设二面角的平面角为,则,
∴二面角的正弦值为.
方法二:(1)证明:连接交于点,
因为四边形为平行四边形,所以为中点,
又因为四边形为菱形,所以为中点,
∴在中,且,
∵平面,平面,
∴平面
(2)略,同方法一.
【点睛】
本题主要考查线面平行的证明,考查空间向量法求面面角,意在考查直观想象、逻辑推理与数学运算的数学核心素养,属于中档题.
20.如图,点为圆:上一动点,过点分别作轴,轴的垂线,垂足分别为,,连接延长至点,使得,点的轨迹记为曲线.
(1)求曲线的方程;
(2)若点,分别位于轴与轴的正半轴上,直线与曲线相交于,两点,且,试问在曲线上是否存在点,使得四边形为平行四边形,若存在,求出直线方程;若不存在,说明理由.
【答案】(1)(2)不存在;详见解析
【解析】(1)设,,,通过,即为的中点,转化求解,点的轨迹的方程.
(2)设直线的方程为,先根据,可得,①,再根据韦达定理,点在椭圆上可得,②,将①代入②可得,该方程无解,问题得以解决
【详解】
(1)设,,则,,
由题意知,所以为中点,
由中点坐标公式得,即,
又点在圆:上,故满足,得.
曲线的方程.
(2)由题意知直线的斜率存在且不为零,设直线的方程为,
因为,故,即①,
联立,消去得:,
设,,
,,
,
因为四边形为平行四边形,故,
点在椭圆上,故,整理得②,
将①代入②,得,该方程无解,故这样的直线不存在.
【点睛】
本题考查点的轨迹方程的求法、满足条件的点是否存在的判断与直线方程的求法,考查数学转化思想方法,是中档题.
21.已知函数,其中e为自然对数的底数.
(1)讨论函数的单调性;
(2)用表示中较大者,记函数.若函数在上恰有2个零点,求实数a的取值范围.
【答案】(1)函数的单调递增区间为和,单调递减区间为;(2).
【解析】(1)由题可得,结合的范围判断的正负,即可求解;
(2)结合导数及函数的零点的判定定理,分类讨论进行求解
【详解】
(1),
①当时,,
∴函数在内单调递增;
②当时,令,解得或,
当或时,,则单调递增,
当时,,则单调递减,
∴函数的单调递增区间为和,单调递减区间为
(2)(Ⅰ)当时,所以在上无零点;
(Ⅱ)当时,,
①若,即,则是的一个零点;
②若,即,则不是的零点
(Ⅲ)当时,,所以此时只需考虑函数在上零点的情况,因为,所以
①当时,在上单调递增。又,所以
(ⅰ)当时,在上无零点;
(ⅱ)当时,,又,所以此时在上恰有一个零点;
②当时,令,得,由,得;由,得,所以在上单调递减,在上单调递增,
因为,,所以此时在上恰有一个零点,
综上,
【点睛】
本题考查利用导数求函数单调区间,考查利用导数处理零点个数问题,考查运算能力,考查分类讨论思想
22.在平面直角坐标系中,曲线,曲线的参数方程为
(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系.
(1)求曲线、的极坐标方程;
(2)在极坐标系中,射线与曲线,分别交于、两点(异于极点),定点,求的面积
【答案】(1),;(2).
【解析】(1)先把参数方程化成普通方程,再利用极坐标的公式把普通方程化成极坐标方程;
(2)先利用极坐标求出弦长,再求高,最后求的面积.
【详解】
(1)曲线的极坐标方程为: ,
因为曲线的普通方程为: ,
曲线的极坐标方程为;
(2) 由(1)得:点的极坐标为, 点的极坐标为,
,
点到射线的距离为
的面积为 .
【点睛】
本题考查普通方程、参数方程与极坐标方程之间的互化,同时也考查了利用极坐标方程求解面积问题,考查计算能力,属于中等题.
23.设不等式的解集为M,.
(1)证明:;
(2)比较与的大小,并说明理由.
【答案】(1)证明见解析;(2).
【解析】试题分析:
(1)首先求得集合M,然后结合绝对值不等式的性质即可证得题中的结论;
(2)利用平方做差的方法可证得|1-4ab|>2|a-b|.
试题解析:
(Ⅰ)证明:记f (x) =|x-1|-|x+2|,
则f(x)= ,所以解得-<x<,故M=(-,).
所以,||≤|a|+|b|<×+×=.
(Ⅱ)由(Ⅰ)得0≤a2<,0≤b2<.
|1-4ab|2-4|a-b|2=(1-8ab+16a2b2)-4(a2-2ab+b2)=4(a2-1)(b2-1)>0.
所以,|1-4ab|>2|a-b|.