还剩16页未读,
继续阅读
2020年山东省济宁市金乡县中考数学二模试卷 解析版
展开
2020年山东省济宁市金乡县中考数学二模试卷
一、选择题(每小题3分,共计30分)
1.(3分)下列图形中,既不是中心对称图形也不是轴对称图形的是( )
A. B.
C. D.
2.(3分)港珠澳大桥是连接香港、珠海和澳门的超大型跨海通道,总长55公里.数据55公里用科学记数法表示为( )
A.5.5×104米 B.5.5×103米 C.0.55×104米 D.55×103米
3.(3分)用配方法解方程x2﹣6x﹣4=0,下列配方正确的是( )
A.(x﹣3)2=13 B.(x+3)2=13 C.(x﹣6)2=4 D.(x﹣3)2=5
4.(3分)某村2017年的人均收入为1.2万元,2019年的人均收入为1.452万元,则人均收入的年平均增长率为( )
A.5% B.10% C.15% D.19%
5.(3分)如图,已知∠MON=60°,OP是∠MON的角平分线,点A是OP上一点,过点A作ON的平行线交OM于点B,AB=4.则直线AB与ON之间的距离是( )
A. B.2 C. D.4
6.(3分)若关于x的分式方程﹣=1的解是非负数,则m的取值范围是( )
A.m≥﹣4 B.m≥﹣4 且 m≠﹣3
C.m≥2 且 m≠3 D.m≥2
7.(3分)为了帮助我市一名贫困学生,某校组织捐款,现从全校所有学生的捐款数额中随机抽取10名学生的捐款数统计如下表:
捐款金额/元
20
30
50
90
人数
2
4
3
1
则下列说法正确的是( )
A.10名学生是总体的一个样本
B.中位数是40
C.众数是90
D.方差是400
8.(3分)如图,在△ABC中,∠C=2∠A=90°,分别以点A和点B为圆心,以AC的长为半径画弧交AB于D,E两点,若BC=,则阴影部分的面积是( )
A. B.π﹣2 C.2 D.π﹣1
9.(3分)如图,在平面直角坐标系中,矩形ABCD的顶点A,D分别在x轴、y轴上,对角线BD∥x轴,反比例函数y=(k>0,x>0)的图象经过矩形对角线的交点E.若点A(2,0),D(0,4),则k的值为( )
A.16 B.20 C.32 D.40
10.(3分)如图,点O为正方形ABCD的中心,BE平分∠DBC交DC于点E,延长BC到点F,使FC=EC,连结DF交BE的延长线于点H,连结OH交DC于点G,连结HC.则以下四个结论中:①OH∥BF,②GH=BC,③OD=BF,④∠CHF=45°.正确结论的个数为( )
A.4个 B.3个 C.2个 D.1个
二、填空题(每小题3分,共计15分)
11.(3分)函数y=中,自变量x的取值范围是 .
12.(3分)把多项式a﹣4ab2分解因式为 .
13.(3分)若一个圆锥的底面半径为3cm,高为cm,则圆锥的侧面展开图中圆心角的度数为 .
14.(3分)如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:
①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1,
其中正确的是 .
15.(3分)如图,在平面直角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m.其行走路线如图所示,第1次移动到A1,第2次移动到A2,…,第n次移动到An.则△OA2A2018的面积是 .
三、解答题(共55分,解答时请写出必要的文字说明,演算步骤或推证过程)
16.(6分)图1、图2分别是8×6的网格,网格中每个小正方形的边长均为1,线段AB的端点在小正方形的顶点上,请在图1、图2中各画一个图形,分别满足以下要求:
(1)在图1中画一个△ABC,使得△ABC是面积为10的直角三角形,所画图形的各顶点必须在小正方形的顶点上;
(2)在图2中画一个以线段AB为一边的钝角等腰三角形,并且面积等于10,所画等腰三角形的各顶点必须在小正方形的顶点上.
17.(6分)先化简,再求值:(),请从0、1、2、﹣1、﹣2五个数中选一个你喜欢的数代入求值.
18.(8分)“食品安全”受到全社会的广泛关注,我区兼善中学对部分学生就食品安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面的两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:
(1)接受问卷调查的学生共有 人,扇形统计图中“基本了解”部分所对应扇形的圆心角为 °;
(2)请补全条形统计图;
(3)若对食品安全知识达到“了解”程度的学生中,男、女生的比例恰为2:3,现从中随机抽取2人参加食品安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率.
19.(8分)2020年春节前夕,一场突如其来的新冠肺炎疫情牵动着全国人民的心,因疫情发展迅速,全国口罩等防护用品成了年货,供应紧张.某药店用2000元购进某品牌的一批口罩后,供不应求,又用5000元购进这种口罩,第二批口罩的数量是第一批的2倍,但进货单价比第一批贵2元.
(1)第一批口罩进货单价多少元?
(2)若两次购进口罩按同一价格销售,两批全部售完后,获利不少于2000元,那么销售单价至少为多少元?
(3)由于党的好政策,爱心工人加班加点地生产,口罩变得不再紧俏,药店第三批进货单价比第一批便宜1元,若按照(2)中销售单价出售,每天可以售出60个,药店为了促销,决定降低一定的价格,每降低一元,每天多售出20个,问单价定为多少时,每天利润最大?最大是多少?
20.(8分)如图,在Rt△ABC中,∠ACB=90°,E是BC的中点,以AC为直径的⊙O与AB边交于点D,连接DE.
(1)求证:DE是⊙O的切线;
(2)若CD=6cm,DE=5cm,求⊙O直径的长.
21.(8分)(1)问题发现
如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.
填空:
①∠AEB的度数为 ;
②线段AD,BE之间的数量关系为 .
(2)拓展探究
如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.
(3)解决问题
如图3,在正方形ABCD中,CD=,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离.
22.(11分)如图1,在平面直角坐标系中,已知抛物线y=ax2+bx﹣5与x轴交于A(﹣1,0),B(5,0)两点,与y轴交于点C.
(1)求抛物线的函数表达式;
(2)如图2,CE∥x轴与抛物线相交于点E,点H是直线CE下方抛物线上的动点,过点H且与y轴平行的直线与BC,CE分别相交于点F,G,试探究当点H运动到何处时,四边形CHEF的面积最大,求点H的坐标;
(3)若点K为抛物线的顶点,点M(4,m)是该抛物线上的一点,在x轴,y轴上分别找点P,Q,使四边形PQKM的周长最小,求出点P,Q的坐标.
2020年山东省济宁市金乡县中考数学二模试卷
参考答案与试题解析
一、选择题(每小题3分,共计30分)
1.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项不合题意;
B、不是轴对称图形,不是中心对称图形,故本选项符合题意;
C、是轴对称图形,是中心对称图形,故本选项不合题意;
D、是轴对称图形,是中心对称图形,故本选项不合题意.
故选:B.
2.【解答】解:55公里=55000米=5.5×104米.
故选:A.
3.【解答】解:方程x2﹣6x﹣4=0变形得:x2﹣6x=4,
配方得:x2﹣6x+9=13,即(x﹣3)2=13,
故选:A.
4.【解答】解:设人均收入的年平均增长率为x,
依题意,得:1.2(1+x)2=1.452,
解得:x1=0.1,x2=﹣2.1(不合题意,舍去).
故选:B.
5.【解答】解:过A作AC⊥OM,AD⊥ON,
∵OP平分∠MON,∠MON=60°,
∴AC=AD,∠MOP=∠NOP=30°,
∵BA∥ON,
∴∠BAO=∠PON=30°,
∵∠ABC为△AOB的外角,
∴∠ABC=60°,
在Rt△ABC中,∠BAC=30°,AB=4,
∴BC=2,
根据勾股定理得:AC==2,
∴AD=AC=2,
则直线AB与ON之间的距离为2,
故选:C.
6.【解答】解:去分母得m+3=x﹣1,
整理得x=m+4,
因为关于x的分式方程﹣=1的解是非负数,
所以m+4≥0且m+4≠1,
解得m≥﹣4且m≠﹣3,
故选:B.
7.【解答】解:A、10名学生的捐款数是总体的一个样本,故本选项错误;
B、中位数是30,故本选项错误;
C、众数是30,故本选项错误;
D、平均数是:(20×2+30×4+50×3+90)÷10=40(元),
则方差是:×[2×(20﹣40)2+4×(30﹣40)2+3×(50﹣40)2+(90﹣40)2]=400,故本选项正确;
故选:D.
8.【解答】解:∵在△ABC中,∠C=2∠A=90°,
∴∠A=45°,
∴△ACB是等腰直角三角形,
∴AC=BC=,
∴阴影部分的面积S=S△ACB﹣(S扇形CAE+S扇形CBD﹣S△ACB)
=﹣(+﹣)
=2﹣,
故选:C.
9.【解答】解:∵BD∥x轴,D(0,4),
∴B、D两点纵坐标相同,都为4,
∴可设B(x,4).
∵矩形ABCD的对角线的交点为E,
∴E为BD中点,∠DAB=90°.
∴E(x,4).
∵∠DAB=90°,
∴AD2+AB2=BD2,
∵A(2,0),D(0,4),B(x,4),
∴22+42+(x﹣2)2+42=x2,
解得x=10,
∴E(5,4).
∵反比例函数y=(k>0,x>0)的图象经过点E,
∴k=5×4=20.
故选:B.
10.【解答】解:∵EC=CF,∠BCE=∠DCF,BC=DC,
∴△BCE≌△DCF,
∴∠CBE=∠CDF,
∵∠CBE+∠BEC=90°,∠BEC=∠DEH,
∴∠DEH+∠CDF=90°,
∴∠BHD=∠BHF=90°,
∵BH=BH,∠HBD=∠HBF,
∴△BHD≌△BHF,
∴DH=HF,∵OD=OB
∴OH是△DBF的中位线
∴OH∥BF;故①正确;
∴OH=BF,∠DOH=∠CBD=45°,
∵OH是△BFD的中位线,
∴DG=CG=BC,GH=CF,
∵CE=CF,
∴GH=CF=CE
∵CE<CG=BC,
∴GH<BC,故②错误.
∵四边形ABCD是正方形,BE是∠DBC的平分线,
∴BC=CD,∠BCD=∠DCF,∠EBC=22.5°,
∵CE=CF,
∴Rt△BCE≌Rt△DCF(SAS),
∴∠EBC=∠CDF=22.5°,
∴∠BFH=90°﹣∠CDF=90°﹣22.5°=67.5°,
∵OH是△DBF的中位线,CD⊥AF,
∴OH是CD的垂直平分线,
∴DH=CH,
∴∠CDF=∠DCH=22.5°,
∴∠HCF=90°﹣∠DCH=90°﹣22.5°=67.5°,
∴∠CHF=180°﹣∠HCF﹣∠BFH=180°﹣67.5°﹣67.5°=45°,故④正确;
∴∠ODH=∠BDC+∠CDF=67.5°,
∴∠OHD=180°﹣∠ODH﹣∠DOH=67.5°,
∴∠ODH=∠OHD,
∴OD=OH=BF;故③正确.
故选:B.
二、填空题(每小题3分,共计15分)
11.【解答】解:根据题意得:,
解得:x≥2且x≠3.
故答案是:x≥2且x≠3.
12.【解答】解:a﹣4ab2分解因式为
=a(1﹣4b2)
=a(1+2b)(1﹣2b).
故答案为:a(1+2b)(1﹣2b).
13.【解答】解:设圆锥的侧面展开图的圆心角为n°,
圆锥的母线长==9,
∴圆锥的侧面展开图扇形的半径为9,扇形弧长为6π,
∴=6π,
解得,n=120,
故答案为:120°.
14.【解答】解:∵对称轴x=﹣=1,
∴2a+b=0,①正确;
∵a<0,
∴b>0,
∵抛物线与y轴的交点在正半轴上,
∴c>0,
∴abc<0,②错误;
∵把抛物线y=ax2+bx+c向下平移3个单位,得到y=ax2+bx+c﹣3,
∴顶点坐标A(1,3)变为(1,0),抛物线与x轴相切,
∴方程ax2+bx+c=3有两个相等的实数根,③正确;
∵对称轴是直线x=1,与x轴的一个交点是(4,0),
∴与x轴的另一个交点是(﹣2,0),④错误;
∵当1<x<4时,由图象可知y2<y1,
∴⑤正确.
正确的有①③⑤.
故答案为:①③⑤.
15.【解答】解:A1(0,1),A2(1,1),A3(2,1),A4(2,0),A5(3,0),A6(3,1),…,
由题意知OA4n=2n,
∵2018÷4=504…2,
∴OA2017=+1=1009,
∴A2A2018=1009﹣1=1008,
则△OA2A2018的面积是×1×1008=504m2,
故答案为:504m2.
三、解答题(共55分,解答时请写出必要的文字说明,演算步骤或推证过程)
16.【解答】解:(1)如图1中,△ABC即为所求(答案不唯一).
17.【解答】解:原式=[﹣]÷
=×
=a﹣1,
当a=﹣1时,原式=﹣2.
18.【解答】解:(1)接受问卷调查的学生共有30÷50%=60(人),
扇形统计图中“基本了解”部分所对应扇形的圆心角为360°×=90°,
故答案为:60,90.
(2)了解的人数有:60﹣15﹣30﹣10=5(人),补图如下:
(3)画树状图得:
∵共有20种等可能的结果,恰好抽到1个男生和1个女生的有12种情况,
∴恰好抽到1个男生和1个女生的概率为=.
19.【解答】解:(1)设第一批口罩的进货单价为x元,则第二批口罩的进货单价为(x+2)元,
,
解得,x=8
经检验,x=8是原分式方程的解,
答:第一批口罩进货单价为8元;
(2)设销售单价为a元,
(a﹣8)×+(a﹣8﹣2)×≥2000,
解得,a≥12
即销售单价至少为12元;
(3)设利润为w元,单价为b元,
w=(b﹣7)[60+(12﹣b)×20]=﹣20(b﹣11)2+320,
∴当b=11时,w取得最大值,此时w=320,
答:定价为11元时,利润最大,最大是320元.
20.【解答】(1)证明:连结DO,如图,
∵∠BDC=90°,E为BC的中点,
∴DE=CE=BE,
∴∠EDC=∠ECD,
又∵OD=OC,
∴∠ODC=∠OCD,
而∠OCD+∠DCE=∠ACB=90°,
∴∠EDC+∠ODC=90°,即∠EDO=90°,
∴DE⊥OD,
∴DE与⊙O相切;
(2)由(1)得,BC===8,
∵∠BCA=∠BDC=90°,∠B=∠B,
∴△BCA∽△BDC,
∴=,
∴=,
∴AC=,
∴⊙O直径的长为.
21.【解答】解:(1)①如图1,
∵△ACB和△DCE均为等边三角形,
∴CA=CB,CD=CE,∠ACB=∠DCE=60°.
∴∠ACD=∠BCE.
在△ACD和△BCE中,
∴△ACD≌△BCE(SAS).
∴∠ADC=∠BEC.
∵△DCE为等边三角形,
∴∠CDE=∠CED=60°.
∵点A,D,E在同一直线上,
∴∠ADC=120°.
∴∠BEC=120°.
∴∠AEB=∠BEC﹣∠CED=60°.
故答案为:60°.
②∵△ACD≌△BCE,
∴AD=BE.
故答案为:AD=BE.
(2)∠AEB=90°,AE=BE+2CM.
理由:如图2,
∵△ACB和△DCE均为等腰直角三角形,
∴CA=CB,CD=CE,∠ACB=∠DCE=90°.
∴∠ACD=∠BCE.
在△ACD和△BCE中,
∴△ACD≌△BCE(SAS).
∴AD=BE,∠ADC=∠BEC.
∵△DCE为等腰直角三角形,
∴∠CDE=∠CED=45°.
∵点A,D,E在同一直线上,
∴∠ADC=135°.
∴∠BEC=135°.
∴∠AEB=∠BEC﹣∠CED=90°.
∵CD=CE,CM⊥DE,
∴DM=ME.
∵∠DCE=90°,
∴DM=ME=CM.
∴AE=AD+DE=BE+2CM.
(3)点A到BP的距离为或.
理由如下:
∵PD=1,
∴点P在以点D为圆心,1为半径的圆上.
∵∠BPD=90°,
∴点P在以BD为直径的圆上.
∴点P是这两圆的交点.
①当点P在如图3①所示位置时,
连接PD、PB、PA,作AH⊥BP,垂足为H,
过点A作AE⊥AP,交BP于点E,如图3①.
∵四边形ABCD是正方形,
∴∠ADB=45°.AB=AD=DC=BC=,∠BAD=90°.
∴BD=2.
∵DP=1,
∴BP=.
∵∠BPD=∠BAD=90°,
∴A、P、D、B在以BD为直径的圆上,
∴∠APB=∠ADB=45°.
∴△PAE是等腰直角三角形.
又∵△BAD是等腰直角三角形,点B、E、P共线,AH⊥BP,
∴由(2)中的结论可得:BP=2AH+PD.
∴=2AH+1.
∴AH=.
②当点P在如图3②所示位置时,
连接PD、PB、PA,作AH⊥BP,垂足为H,
过点A作AE⊥AP,交PB的延长线于点E,如图3②.
同理可得:BP=2AH﹣PD.
∴=2AH﹣1.
∴AH=.
综上所述:点A到BP的距离为或.
22.【解答】解:(1)∵点A(﹣1,0),B(5,0)在抛物线y=ax2+bx﹣5上,
∴,
解得,
∴抛物线的表达式为y=x2﹣4x﹣5,
(2)设H(t,t2﹣4t﹣5),
∵CE∥x轴,
∴点E的纵坐标为﹣5,
∵E在抛物线上,
∴x2﹣4x﹣5=﹣5,
∴x=0(舍)或x=4,
∴E(4,﹣5),
∴CE=4,
∵B(5,0),C(0,﹣5),
∴直线BC的解析式为y=x﹣5,
∴F(t,t﹣5),
∴HF=t﹣5﹣(t2﹣4t﹣5)=﹣(t﹣)2+,
∵CE∥x轴,HF∥y轴,
∴CE⊥HF,
∴S四边形CHEF=CE•HF=﹣2(t﹣)2+,
∴H(,﹣);
(3)如图2,∵K为抛物线的顶点,
∴K(2,﹣9),
∴K关于y轴的对称点K'(﹣2,﹣9),
∵M(4,m)在抛物线上,
∴M(4,﹣5),
∴点M关于x轴的对称点M'(4,5),
∴直线K'M'的解析式为y=x﹣,
∴P(,0),Q(0,﹣).
一、选择题(每小题3分,共计30分)
1.(3分)下列图形中,既不是中心对称图形也不是轴对称图形的是( )
A. B.
C. D.
2.(3分)港珠澳大桥是连接香港、珠海和澳门的超大型跨海通道,总长55公里.数据55公里用科学记数法表示为( )
A.5.5×104米 B.5.5×103米 C.0.55×104米 D.55×103米
3.(3分)用配方法解方程x2﹣6x﹣4=0,下列配方正确的是( )
A.(x﹣3)2=13 B.(x+3)2=13 C.(x﹣6)2=4 D.(x﹣3)2=5
4.(3分)某村2017年的人均收入为1.2万元,2019年的人均收入为1.452万元,则人均收入的年平均增长率为( )
A.5% B.10% C.15% D.19%
5.(3分)如图,已知∠MON=60°,OP是∠MON的角平分线,点A是OP上一点,过点A作ON的平行线交OM于点B,AB=4.则直线AB与ON之间的距离是( )
A. B.2 C. D.4
6.(3分)若关于x的分式方程﹣=1的解是非负数,则m的取值范围是( )
A.m≥﹣4 B.m≥﹣4 且 m≠﹣3
C.m≥2 且 m≠3 D.m≥2
7.(3分)为了帮助我市一名贫困学生,某校组织捐款,现从全校所有学生的捐款数额中随机抽取10名学生的捐款数统计如下表:
捐款金额/元
20
30
50
90
人数
2
4
3
1
则下列说法正确的是( )
A.10名学生是总体的一个样本
B.中位数是40
C.众数是90
D.方差是400
8.(3分)如图,在△ABC中,∠C=2∠A=90°,分别以点A和点B为圆心,以AC的长为半径画弧交AB于D,E两点,若BC=,则阴影部分的面积是( )
A. B.π﹣2 C.2 D.π﹣1
9.(3分)如图,在平面直角坐标系中,矩形ABCD的顶点A,D分别在x轴、y轴上,对角线BD∥x轴,反比例函数y=(k>0,x>0)的图象经过矩形对角线的交点E.若点A(2,0),D(0,4),则k的值为( )
A.16 B.20 C.32 D.40
10.(3分)如图,点O为正方形ABCD的中心,BE平分∠DBC交DC于点E,延长BC到点F,使FC=EC,连结DF交BE的延长线于点H,连结OH交DC于点G,连结HC.则以下四个结论中:①OH∥BF,②GH=BC,③OD=BF,④∠CHF=45°.正确结论的个数为( )
A.4个 B.3个 C.2个 D.1个
二、填空题(每小题3分,共计15分)
11.(3分)函数y=中,自变量x的取值范围是 .
12.(3分)把多项式a﹣4ab2分解因式为 .
13.(3分)若一个圆锥的底面半径为3cm,高为cm,则圆锥的侧面展开图中圆心角的度数为 .
14.(3分)如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:
①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1,
其中正确的是 .
15.(3分)如图,在平面直角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m.其行走路线如图所示,第1次移动到A1,第2次移动到A2,…,第n次移动到An.则△OA2A2018的面积是 .
三、解答题(共55分,解答时请写出必要的文字说明,演算步骤或推证过程)
16.(6分)图1、图2分别是8×6的网格,网格中每个小正方形的边长均为1,线段AB的端点在小正方形的顶点上,请在图1、图2中各画一个图形,分别满足以下要求:
(1)在图1中画一个△ABC,使得△ABC是面积为10的直角三角形,所画图形的各顶点必须在小正方形的顶点上;
(2)在图2中画一个以线段AB为一边的钝角等腰三角形,并且面积等于10,所画等腰三角形的各顶点必须在小正方形的顶点上.
17.(6分)先化简,再求值:(),请从0、1、2、﹣1、﹣2五个数中选一个你喜欢的数代入求值.
18.(8分)“食品安全”受到全社会的广泛关注,我区兼善中学对部分学生就食品安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面的两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:
(1)接受问卷调查的学生共有 人,扇形统计图中“基本了解”部分所对应扇形的圆心角为 °;
(2)请补全条形统计图;
(3)若对食品安全知识达到“了解”程度的学生中,男、女生的比例恰为2:3,现从中随机抽取2人参加食品安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率.
19.(8分)2020年春节前夕,一场突如其来的新冠肺炎疫情牵动着全国人民的心,因疫情发展迅速,全国口罩等防护用品成了年货,供应紧张.某药店用2000元购进某品牌的一批口罩后,供不应求,又用5000元购进这种口罩,第二批口罩的数量是第一批的2倍,但进货单价比第一批贵2元.
(1)第一批口罩进货单价多少元?
(2)若两次购进口罩按同一价格销售,两批全部售完后,获利不少于2000元,那么销售单价至少为多少元?
(3)由于党的好政策,爱心工人加班加点地生产,口罩变得不再紧俏,药店第三批进货单价比第一批便宜1元,若按照(2)中销售单价出售,每天可以售出60个,药店为了促销,决定降低一定的价格,每降低一元,每天多售出20个,问单价定为多少时,每天利润最大?最大是多少?
20.(8分)如图,在Rt△ABC中,∠ACB=90°,E是BC的中点,以AC为直径的⊙O与AB边交于点D,连接DE.
(1)求证:DE是⊙O的切线;
(2)若CD=6cm,DE=5cm,求⊙O直径的长.
21.(8分)(1)问题发现
如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.
填空:
①∠AEB的度数为 ;
②线段AD,BE之间的数量关系为 .
(2)拓展探究
如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.
(3)解决问题
如图3,在正方形ABCD中,CD=,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离.
22.(11分)如图1,在平面直角坐标系中,已知抛物线y=ax2+bx﹣5与x轴交于A(﹣1,0),B(5,0)两点,与y轴交于点C.
(1)求抛物线的函数表达式;
(2)如图2,CE∥x轴与抛物线相交于点E,点H是直线CE下方抛物线上的动点,过点H且与y轴平行的直线与BC,CE分别相交于点F,G,试探究当点H运动到何处时,四边形CHEF的面积最大,求点H的坐标;
(3)若点K为抛物线的顶点,点M(4,m)是该抛物线上的一点,在x轴,y轴上分别找点P,Q,使四边形PQKM的周长最小,求出点P,Q的坐标.
2020年山东省济宁市金乡县中考数学二模试卷
参考答案与试题解析
一、选择题(每小题3分,共计30分)
1.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项不合题意;
B、不是轴对称图形,不是中心对称图形,故本选项符合题意;
C、是轴对称图形,是中心对称图形,故本选项不合题意;
D、是轴对称图形,是中心对称图形,故本选项不合题意.
故选:B.
2.【解答】解:55公里=55000米=5.5×104米.
故选:A.
3.【解答】解:方程x2﹣6x﹣4=0变形得:x2﹣6x=4,
配方得:x2﹣6x+9=13,即(x﹣3)2=13,
故选:A.
4.【解答】解:设人均收入的年平均增长率为x,
依题意,得:1.2(1+x)2=1.452,
解得:x1=0.1,x2=﹣2.1(不合题意,舍去).
故选:B.
5.【解答】解:过A作AC⊥OM,AD⊥ON,
∵OP平分∠MON,∠MON=60°,
∴AC=AD,∠MOP=∠NOP=30°,
∵BA∥ON,
∴∠BAO=∠PON=30°,
∵∠ABC为△AOB的外角,
∴∠ABC=60°,
在Rt△ABC中,∠BAC=30°,AB=4,
∴BC=2,
根据勾股定理得:AC==2,
∴AD=AC=2,
则直线AB与ON之间的距离为2,
故选:C.
6.【解答】解:去分母得m+3=x﹣1,
整理得x=m+4,
因为关于x的分式方程﹣=1的解是非负数,
所以m+4≥0且m+4≠1,
解得m≥﹣4且m≠﹣3,
故选:B.
7.【解答】解:A、10名学生的捐款数是总体的一个样本,故本选项错误;
B、中位数是30,故本选项错误;
C、众数是30,故本选项错误;
D、平均数是:(20×2+30×4+50×3+90)÷10=40(元),
则方差是:×[2×(20﹣40)2+4×(30﹣40)2+3×(50﹣40)2+(90﹣40)2]=400,故本选项正确;
故选:D.
8.【解答】解:∵在△ABC中,∠C=2∠A=90°,
∴∠A=45°,
∴△ACB是等腰直角三角形,
∴AC=BC=,
∴阴影部分的面积S=S△ACB﹣(S扇形CAE+S扇形CBD﹣S△ACB)
=﹣(+﹣)
=2﹣,
故选:C.
9.【解答】解:∵BD∥x轴,D(0,4),
∴B、D两点纵坐标相同,都为4,
∴可设B(x,4).
∵矩形ABCD的对角线的交点为E,
∴E为BD中点,∠DAB=90°.
∴E(x,4).
∵∠DAB=90°,
∴AD2+AB2=BD2,
∵A(2,0),D(0,4),B(x,4),
∴22+42+(x﹣2)2+42=x2,
解得x=10,
∴E(5,4).
∵反比例函数y=(k>0,x>0)的图象经过点E,
∴k=5×4=20.
故选:B.
10.【解答】解:∵EC=CF,∠BCE=∠DCF,BC=DC,
∴△BCE≌△DCF,
∴∠CBE=∠CDF,
∵∠CBE+∠BEC=90°,∠BEC=∠DEH,
∴∠DEH+∠CDF=90°,
∴∠BHD=∠BHF=90°,
∵BH=BH,∠HBD=∠HBF,
∴△BHD≌△BHF,
∴DH=HF,∵OD=OB
∴OH是△DBF的中位线
∴OH∥BF;故①正确;
∴OH=BF,∠DOH=∠CBD=45°,
∵OH是△BFD的中位线,
∴DG=CG=BC,GH=CF,
∵CE=CF,
∴GH=CF=CE
∵CE<CG=BC,
∴GH<BC,故②错误.
∵四边形ABCD是正方形,BE是∠DBC的平分线,
∴BC=CD,∠BCD=∠DCF,∠EBC=22.5°,
∵CE=CF,
∴Rt△BCE≌Rt△DCF(SAS),
∴∠EBC=∠CDF=22.5°,
∴∠BFH=90°﹣∠CDF=90°﹣22.5°=67.5°,
∵OH是△DBF的中位线,CD⊥AF,
∴OH是CD的垂直平分线,
∴DH=CH,
∴∠CDF=∠DCH=22.5°,
∴∠HCF=90°﹣∠DCH=90°﹣22.5°=67.5°,
∴∠CHF=180°﹣∠HCF﹣∠BFH=180°﹣67.5°﹣67.5°=45°,故④正确;
∴∠ODH=∠BDC+∠CDF=67.5°,
∴∠OHD=180°﹣∠ODH﹣∠DOH=67.5°,
∴∠ODH=∠OHD,
∴OD=OH=BF;故③正确.
故选:B.
二、填空题(每小题3分,共计15分)
11.【解答】解:根据题意得:,
解得:x≥2且x≠3.
故答案是:x≥2且x≠3.
12.【解答】解:a﹣4ab2分解因式为
=a(1﹣4b2)
=a(1+2b)(1﹣2b).
故答案为:a(1+2b)(1﹣2b).
13.【解答】解:设圆锥的侧面展开图的圆心角为n°,
圆锥的母线长==9,
∴圆锥的侧面展开图扇形的半径为9,扇形弧长为6π,
∴=6π,
解得,n=120,
故答案为:120°.
14.【解答】解:∵对称轴x=﹣=1,
∴2a+b=0,①正确;
∵a<0,
∴b>0,
∵抛物线与y轴的交点在正半轴上,
∴c>0,
∴abc<0,②错误;
∵把抛物线y=ax2+bx+c向下平移3个单位,得到y=ax2+bx+c﹣3,
∴顶点坐标A(1,3)变为(1,0),抛物线与x轴相切,
∴方程ax2+bx+c=3有两个相等的实数根,③正确;
∵对称轴是直线x=1,与x轴的一个交点是(4,0),
∴与x轴的另一个交点是(﹣2,0),④错误;
∵当1<x<4时,由图象可知y2<y1,
∴⑤正确.
正确的有①③⑤.
故答案为:①③⑤.
15.【解答】解:A1(0,1),A2(1,1),A3(2,1),A4(2,0),A5(3,0),A6(3,1),…,
由题意知OA4n=2n,
∵2018÷4=504…2,
∴OA2017=+1=1009,
∴A2A2018=1009﹣1=1008,
则△OA2A2018的面积是×1×1008=504m2,
故答案为:504m2.
三、解答题(共55分,解答时请写出必要的文字说明,演算步骤或推证过程)
16.【解答】解:(1)如图1中,△ABC即为所求(答案不唯一).
17.【解答】解:原式=[﹣]÷
=×
=a﹣1,
当a=﹣1时,原式=﹣2.
18.【解答】解:(1)接受问卷调查的学生共有30÷50%=60(人),
扇形统计图中“基本了解”部分所对应扇形的圆心角为360°×=90°,
故答案为:60,90.
(2)了解的人数有:60﹣15﹣30﹣10=5(人),补图如下:
(3)画树状图得:
∵共有20种等可能的结果,恰好抽到1个男生和1个女生的有12种情况,
∴恰好抽到1个男生和1个女生的概率为=.
19.【解答】解:(1)设第一批口罩的进货单价为x元,则第二批口罩的进货单价为(x+2)元,
,
解得,x=8
经检验,x=8是原分式方程的解,
答:第一批口罩进货单价为8元;
(2)设销售单价为a元,
(a﹣8)×+(a﹣8﹣2)×≥2000,
解得,a≥12
即销售单价至少为12元;
(3)设利润为w元,单价为b元,
w=(b﹣7)[60+(12﹣b)×20]=﹣20(b﹣11)2+320,
∴当b=11时,w取得最大值,此时w=320,
答:定价为11元时,利润最大,最大是320元.
20.【解答】(1)证明:连结DO,如图,
∵∠BDC=90°,E为BC的中点,
∴DE=CE=BE,
∴∠EDC=∠ECD,
又∵OD=OC,
∴∠ODC=∠OCD,
而∠OCD+∠DCE=∠ACB=90°,
∴∠EDC+∠ODC=90°,即∠EDO=90°,
∴DE⊥OD,
∴DE与⊙O相切;
(2)由(1)得,BC===8,
∵∠BCA=∠BDC=90°,∠B=∠B,
∴△BCA∽△BDC,
∴=,
∴=,
∴AC=,
∴⊙O直径的长为.
21.【解答】解:(1)①如图1,
∵△ACB和△DCE均为等边三角形,
∴CA=CB,CD=CE,∠ACB=∠DCE=60°.
∴∠ACD=∠BCE.
在△ACD和△BCE中,
∴△ACD≌△BCE(SAS).
∴∠ADC=∠BEC.
∵△DCE为等边三角形,
∴∠CDE=∠CED=60°.
∵点A,D,E在同一直线上,
∴∠ADC=120°.
∴∠BEC=120°.
∴∠AEB=∠BEC﹣∠CED=60°.
故答案为:60°.
②∵△ACD≌△BCE,
∴AD=BE.
故答案为:AD=BE.
(2)∠AEB=90°,AE=BE+2CM.
理由:如图2,
∵△ACB和△DCE均为等腰直角三角形,
∴CA=CB,CD=CE,∠ACB=∠DCE=90°.
∴∠ACD=∠BCE.
在△ACD和△BCE中,
∴△ACD≌△BCE(SAS).
∴AD=BE,∠ADC=∠BEC.
∵△DCE为等腰直角三角形,
∴∠CDE=∠CED=45°.
∵点A,D,E在同一直线上,
∴∠ADC=135°.
∴∠BEC=135°.
∴∠AEB=∠BEC﹣∠CED=90°.
∵CD=CE,CM⊥DE,
∴DM=ME.
∵∠DCE=90°,
∴DM=ME=CM.
∴AE=AD+DE=BE+2CM.
(3)点A到BP的距离为或.
理由如下:
∵PD=1,
∴点P在以点D为圆心,1为半径的圆上.
∵∠BPD=90°,
∴点P在以BD为直径的圆上.
∴点P是这两圆的交点.
①当点P在如图3①所示位置时,
连接PD、PB、PA,作AH⊥BP,垂足为H,
过点A作AE⊥AP,交BP于点E,如图3①.
∵四边形ABCD是正方形,
∴∠ADB=45°.AB=AD=DC=BC=,∠BAD=90°.
∴BD=2.
∵DP=1,
∴BP=.
∵∠BPD=∠BAD=90°,
∴A、P、D、B在以BD为直径的圆上,
∴∠APB=∠ADB=45°.
∴△PAE是等腰直角三角形.
又∵△BAD是等腰直角三角形,点B、E、P共线,AH⊥BP,
∴由(2)中的结论可得:BP=2AH+PD.
∴=2AH+1.
∴AH=.
②当点P在如图3②所示位置时,
连接PD、PB、PA,作AH⊥BP,垂足为H,
过点A作AE⊥AP,交PB的延长线于点E,如图3②.
同理可得:BP=2AH﹣PD.
∴=2AH﹣1.
∴AH=.
综上所述:点A到BP的距离为或.
22.【解答】解:(1)∵点A(﹣1,0),B(5,0)在抛物线y=ax2+bx﹣5上,
∴,
解得,
∴抛物线的表达式为y=x2﹣4x﹣5,
(2)设H(t,t2﹣4t﹣5),
∵CE∥x轴,
∴点E的纵坐标为﹣5,
∵E在抛物线上,
∴x2﹣4x﹣5=﹣5,
∴x=0(舍)或x=4,
∴E(4,﹣5),
∴CE=4,
∵B(5,0),C(0,﹣5),
∴直线BC的解析式为y=x﹣5,
∴F(t,t﹣5),
∴HF=t﹣5﹣(t2﹣4t﹣5)=﹣(t﹣)2+,
∵CE∥x轴,HF∥y轴,
∴CE⊥HF,
∴S四边形CHEF=CE•HF=﹣2(t﹣)2+,
∴H(,﹣);
(3)如图2,∵K为抛物线的顶点,
∴K(2,﹣9),
∴K关于y轴的对称点K'(﹣2,﹣9),
∵M(4,m)在抛物线上,
∴M(4,﹣5),
∴点M关于x轴的对称点M'(4,5),
∴直线K'M'的解析式为y=x﹣,
∴P(,0),Q(0,﹣).
相关资料
更多