第2讲 概率(知识点串讲)(复习讲义)
展开第二讲 概率1.事件的相关概念2.事件的关系与运算 定义符号表示包含关系如果事件A发生,则事件B一定发生,这时称事件B包含事件A(或称事件A包含于事件B)B⊇A(或A⊆B)相等关系若B⊇A且A⊇B,那么称事件A与事件B相等A=B并事件(和事件)若某事件发生当且仅当事件A发生或事件B发生,称此事件为事件A与事件B的并事件(或和事件)A∪B(或A+B)交事件(积事件)若某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与事件B的交事件(或积事件)A∩B(或AB)互斥事件若A∩B为不可能事件,那么称事件A与事件B互斥A∩B=∅对立事件若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件A∩B=∅且A∪B=U3. 判断互斥、对立事件的2种方法(1)定义法:判断互斥事件、对立事件一般用定义判断,不可能同时发生的两个事件为互斥事件;两个事件,若有且仅有一个发生,则这两事件为对立事件,对立事件一定是互斥事件.(2)集合法:①由各个事件所含的结果组成的集合彼此的交集为空集,则事件互斥.②事件A的对立事件所含的结果组成的集合,是全集中由事件A所含的结果组成的集合的补集.例1.(2019·山东曲阜检测)从装有2个红球和2个黑球的口袋内任取2个球,那么互斥而不对立的两个事件是( )A.至少有一个黑球与都是黑球B.至少有一个黑球与都是红球C.至少有一个黑球与至少有一个红球D.恰有一个黑球与恰有两个黑球 4.概率和频率(1)在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数,称事件A出现的比例fn(A)=为事件A出现的频率.(2)对于给定的随机事件A,由于事件A发生的频率fn(A)随着试验次数的增加稳定于概率P(A),因此可以用频率fn(A)来估计概率P(A).5. (1)概率与频率的关系⇨(2)随机事件概率的求法⇨例2、(2019·湖北武汉调研)一鲜花店根据一个月(30天)某种鲜花的日销售量与销售天数统计如下,将日销售量落入各组区间的频率视为概率.日销售量(枝)0~5050~100100~150150~200200~250销售天数3天5天13天6天3天(1)试求这30天中日销售量低于100枝的概率;(2)若此花店在日销售量低于100枝的时候选择2天作促销活动,求这2天恰好是在日销售量低于50枝时的概率. 6.概率的几个基本性质(1)概率的取值范围:0≤P(A)≤1.(2)必然事件的概率P(E)=1.(3)不可能事件的概率P(F)=0.(4)概率的加法公式如果事件A与事件B互斥,则P(A∪B)=P(A)+P(B).(5)对立事件的概率若事件A与事件B互为对立事件,则P(A)=1-P(B).例3.(2018·全国卷Ⅲ)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为( )A.0.3 B.0.4 C.0.6 D.0.7练习.(2019·山东济南模拟)从一箱产品中随机地抽取一件,设事件A={抽到一等品},事件B={抽到二等品},事件C={抽到三等品},且已知P(A)=0.65,P(B)=0.2,P(C)=0.1,则事件“抽到的产品不是一等品”的概率为____________. 练习.(2019·辽宁大连月考)从一副不包括大小王的混合后的扑克牌(52张)中,随机抽取1张,事件A为“抽得红桃K”,事件B为“抽得黑桃”,则概率P(A∪B)=____________(结果用最简分数表示). 练习. (2019·河南洛阳检测)围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率为,都是白子的概率是,则从中任意取出2粒恰好是同一色的概率是( )A. B. C. D.1 7.基本事件的特点(1)任何两个基本事件都是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和.8.古典概型具有以下两个特点的概率模型称为古典概率模型,简称古典概型.(1)有限性:试验中所有可能出现的基本事件只有有限个;(2)等可能性:每个基本事件出现的可能性相等.9.古典概型的概率公式P(A)=.例4.(2018·全国卷Ⅱ)从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为( )A.0.6 B.0.5 C.0.4 D.0.3 练习.(2019·山东淄博月考)从3名男同学,2名女同学中任选2人参加知识竞赛,则选到的2名同学中至少有1名男同学的概率是____________. 练习.(2019·辽宁大连模拟)将号码分别为1,2,3,4的四个小球放入一个袋中,这些小球仅号码不同,其余完全相同,甲从袋中摸出一个小球,其号码为a,放回后,乙从此袋中再摸出一个小球,其号码为b,则使不等式a-2b+4<0成立的事件发生的概率为____________. 10. 求解古典概型的交汇问题,关键是把相关的知识转化为事件,然后利用古典概型的有关知识解决,其解题流程为:— ↓—↓—↓—例5. (2019·山东泰安模拟)某种产品的质量以其质量指标值衡量,并依据质量指标值划分等级如下表:质量指标值mm<185185≤m<205m≥205等级三等品二等品一等品从某企业生产的这种产品中抽取200件,检测后得到如图的频率分布直方图:(1)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“一、二等品至少要占全部产品92%”的规定?(2)在样本中,按产品等级用分层抽样的抽取8件,再从这8件产品中随机抽取4件,求抽取的4件产品中,一、二、三等品都有的概率. 练习. (2019·河南洛阳统考)将一颗骰子先后投掷两次分别得到点数a,b,则直线ax+by=0与圆(x-2)2+y2=2有公共点的概率为____________.