第2讲 随机变量及其分布(知识点串讲)(复习讲义)
展开
第2讲 随机变量及其分布
1.离散型随机变量
随着试验结果变化而变化的变量称为随机变量,所有取值可以一一列出的随机变量,称为离散型随机变量.
2.离散型随机变量的分布列及性质
(1)一般地,若离散型随机变量X可能取的不同值为x1,x2,…,xi,…,xn,X取每一个值xi(i=1,2,…,n)的概率P(X=xi)=pi,则下表称为离散型随机变量X的概率分布列.
X
x1
x2
…
xi
…
xn
P
p1
p2
…
pi
…
pn
(2)离散型随机变量的分布列的性质:
①pi≥0(i=1,2,…,n);②p1+p2+p3+…+pn=1.
例1.(2019·山东济宁检测)已知随机变量X的分布列为:P(X=k)=,k=1,2,…,则P(2,所以M会入选最终的大名单.
(2)M获胜场数X的可能取值为0,1,2,3,则
P(X=0)=P( )
=××=;
P(X=1)=P(A )+P( C)+P(B)=××+××+××==;
P(X=2)=P(AB)+P(AC)+P(BC)
=××+××+××=;
P(X=3)=P(ABC)=××==,所以M获胜场数X的分布列为:
X
0
1
2
3
P
数学期望为E(X)=0×+1×+2×+3×=.
练习. (2019·山东沂水模拟)甲、乙、丙3位大学生同时应聘某个用人单位的职位,3人能被选中的概率分别为,,,且各自能否被选中互不影响.
(1)求3人同时被选中的概率;
(2)求3人中至少有1人被选中的概率.
解 记甲、乙、丙能被选中的事件分别为A,B,C,则P(A)=,P(B)=,P(C)=.
(1)3人同时被选中的概率
P1=P(ABC)=P(A)P(B)P(C)=××=.
(2)法一:3人中有2人被选中的概率
P2=P(AB∪AC∪BC)
=××+××+××=.
3人中只有1人被选中的概率
P3=P(A ∪B∪ C)=××+××+××=.
故3人中至少有1人被选中的概率为P1+P2+P3=++=.
法二:3人都未被选中的概率为
P( )==,
所以3人中至少有一人被选中的概率为1-=.
7.独立重复试验与二项分布
(1)独立重复试验
在相同条件下重复做的n次试验称为n次独立重复试验.Ai(i=1,2,…,n)表示第i次试验结果,则P(A1A2A3…An)=P(A1)P(A2)…P(An).
(2)二项分布
在n次独立重复试验中,用X表示事件A发生的次数,设每次试验中事件A发生的概率是p,此时称随机变量X服从二项分布,记作X~B(n,p),并称p为成功概率.在n次独立重复试验中,事件A恰好发生k次的概率为P(X=k)=Cpk(1-p)n-k(k=0,1,2,…,n).
例5.(全国卷Ⅰ)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )
A.0.648 B.0.432
C.0.36 D.0.312
【答案】A [3次投篮投中2次的概率为P(k=2)=C×0.62×(1-0.6),投中3次的概率为P(k=3)=0.63,所以通过测试的概率为P(k=2)+P(k=3)=C×0.62×(1-0.6)+0.63=0.648.]
练习. (2019·山东济南模拟)某市为了调查学校“阳光体育活动”在高三年级的实施情况,从本市某校高三男生中随机抽取一个班的男生进行投掷实心铅球(重3 kg)测试,成绩在6.9米以上的为合格.把所得数据进行整理后,分成5组画出频率分布直方图的一部分(如图所示),已知成绩在[9.9,11.4)的频数是4.
(1)求这次铅球测试成绩合格的人数;
(2)若从今年该市高中毕业男生中随机抽取两名,记ξ表示两人中成绩不合格的人数,利用样本估计总体,求ξ的分布列.
解 (1)由直方图,知成绩在[9.9,11.4)的频率为
1-(0.05+0.22+0.30+0.03)×1.5=0.1.
因为成绩在[9.9,11.4)的频数是4,
故抽取的总人数为=40.
又成绩在6.9米以上的为合格,所以这次铅球测试成绩合格的人数为40-0.05×1.5×40=37.
(2)ξ的所有可能的取值为0,1,2,利用样本估计总体,从今年该市高中毕业男生中随机抽取一名成绩合格的概率为,成绩不合格的概率为
1-=,可判断ξ~B.
P(ξ=0)=C×2=,
P(ξ=1)=C××=,
P(ξ=2)=C×2=,
故所求分布列为
X
0
1
2
P
8.均值
(1)一般地,若离散型随机变量X的分布列为:
X
x1
x2
…
xi
…
xn
P
p1
p2
…
pi
…
pn
则称E(X)=x1p1+x2p2+…+xipi+…+xnpn为随机变量X的均值或数学期望.它反映了离散型随机变量取值的平均水平.
(2)若Y=aX+b,其中a,b为常数,则Y也是随机变量,且E(aX+b)=aE(X)+b.
(3)①若X服从两点分布,则E(X)=p;
②若X~B(n,p),则E(X)=np.
9.方差
(1)设离散型随机变量X的分布列为
X
x1
x2
…
xi
…
xn
P
p1
p2
…
pi
…
pn
则(xi-E(X))2描述了xi(i=1,2,…,n)相对于均值E(X)的偏离程度.而D(X)=(xi-E(X))2pi为这些偏离程度的加权平均,刻画了随机变量X与其均值E(X)的平均偏离程度.称D(X)为随机变量X的方差,并称其算术平方根为随机变量X的标准差.
(2)D(aX+b)=a2D(X).
(3)若X服从两点分布,则D(X)=p(1-p).
(4)若X~B(n,p),则D(X)=np(1-p).
例6.(2019·江西上饶月考)已知随机变量X服从二项分布B(n,p),若E(X)=30,D(X)=20,则p=____________.
【答案】 [由于X~B(n,p),且E(X)=30,D(X)=20,
所以解之得p=.]
练习. (2018·全国卷Ⅰ)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验.设每件产品为不合格品的概率都为p(02)=.]
练习.(2019·山东德州模拟)已知某公司生产的一种产品的质量X(单位:克)服从正态分布N(100,4),现从该产品的生产线上随机抽取10 000件产品,其中质量在[98,104]内的产品估计有( )
(附:若X服从N(μ,σ2),则P(μ-σ<X<μ+σ)=0.682 7,P(μ-2σ<X<μ+2σ)=0.954 5)
A.4 093件 B.4 772件
C.6 827件 D.8 186件
【答案】 D [由题意可得,该正态分布的对称轴为x=100,且σ=2,则质量在[96,104]内的产品的概率为P(μ-2σ<X<μ+2σ)=0.954 5,而质量在[98,102]内的产品的概率为P(μ-σ<X<μ+σ)=0.682 7,结合对称性可知,质量在[98,104]内的产品的概率为0.682 7+=0.818 6,据此估计质量在[98,104]内的产品的数量为10 000×0.818 6=8 186(件).]