高中数学人教版新课标A必修3第二章 统计综合与测试学案设计
展开章末复习
学习目标 1.会根据不同的特点选择适当的抽样方法获得样本数据.2.能利用图、表对样本数据进行整理分析,用样本和样本的数字特征估计总体.3.能利用散点图对两个变量是否相关进行初步判断,能用线性回归方程进行预测.
1.抽样方法
(1)用随机数法抽样时,对个体所编号码位数要相同,当问题所给位数不同时,以位数较多的为准,在位数较少的数前面添“0”,凑齐位数.
(2)用系统抽样法时,如果总体容量N能被样本容量n整除,抽样间隔为k=;如果总体容量N不能被样本容量n整除,先用简单随机抽样剔除多余个体,抽样间隔为k=(其中K=N-多余个体数).
(3)三种抽样方法的异同点
类别 | 共同点 | 各自特点 | 相互联系 | 适用范围 |
简单随机抽样 | 抽样过程中每个个体被抽到的可能性相同 | 从总体中逐个抽取 |
| 总体中的个体数较少 |
系统抽样 | 将总体平均分成几部分,按事先确定的规则分别在各部分中抽取 | 在起始部分抽样时,采用简单随机抽样 | 总体中的个体数较多 | |
分层抽样 | 将总体分成几层,按各层个体数之比抽取 | 在各层抽样时采用简单随机抽样或系统抽样 | 总体由差异明显的几部分组成 |
2.用样本估计总体
(1)用样本估计总体
用样本频率分布估计总体频率分布时,通常要对给定的一组数据作频率分布表与频率分布直方图.当样本只有两组数据且样本容量比较小时,用茎叶图刻画数据比较方便.
(2)样本的数字特征
样本的数字特征可分为两大类:一类是反映样本数据集中趋势的,包括众数、中位数和平均数;另一类是反映样本波动大小的,包括方差及标准差.
3.变量间的相关关系
(1)两个变量之间的相关关系的研究,通常先作变量的散点图,根据散点图判断这两个变量最接近于哪种确定性关系(函数关系).
(2)求回归方程的步骤:
①先把数据制成表,从表中计算出,,x,xiyi;
②计算回归系数,,公式为
③写出回归方程=x+.
类型一 用样本的频率分布估计总体
例1 某制造商生产一批直径为40 mm的乒乓球,现随机抽样检查20个,测得每个球的直径(单位:mm,保留两位小数)如下:
40.03 40.00 39.98 40.00 39.99 40.00 39.98
40.01 39.98 39.99 40.00 39.99 39.95 40.01
40.02 39.98 40.00 39.99 40.00 39.96
(1)完成下面的频率分布表,并画出频率分布直方图;
分组 | 频数 | 频率 | |
[39.95,39.97) |
|
|
|
[39.97,39.99) |
|
|
|
[39.99,40.01) |
|
|
|
[40.01,40.03] |
|
|
|
合计 |
|
|
|
(2)假定乒乓球的直径误差不超过0.02 mm为合格品.若这批乒乓球的总数为10 000,试根据抽样检查结果估计这批产品的合格个数.
考点 样本估计总体
题点 用样本的频率分布估计总体的频率分布
解 (1)频率分布表如下:
分组 | 频数 | 频率 | |
[39.95,39.97) | 2 | 0.10 | 5 |
[39.97,39.99) | 4 | 0.20 | 10 |
[39.99,40.01) | 10 | 0.50 | 25 |
[40.01,40.03] | 4 | 0.20 | 10 |
合计 | 20 | 1.00 |
|
频率分布直方图如图.
(2)∵抽样的20个产品中在[39.98,40.02]范围内的有17个,∴合格品合格率为×100%=85%.
∴10 000×85%=8 500.
故根据抽样检查结果,可以估计这批产品的合格个数为8 500.
反思与感悟 总体分布中相应的统计图表主要包括:频率分布表、频率分布直方图、频率分布折线图等.通过这些统计图表给出的相应统计信息可以估计总体.
跟踪训练1 某市民用水拟实行阶梯水价,每人月用水量中不超过w立方米的部分按4元/立方米收费,超出w立方米的部分按10元/立方米收费,从该市随机调查了10 000位居民,获得了他们某月的用水量数据,整理得到如下频率分布直方图:
(1)如果w为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米,w至少定为多少?
(2)假设同组中的每个数据用该组区间的右端点值代替,当w=3时,估计该市居民该月的人均水费.
考点 样本估计总体
题点 用样本的频率分布估计总体的频率分布
解 (1)如题图所示,用水量在[0.5,3)的频率的和为
(0.2+0.3+0.4+0.5+0.3)×0.5=0.85.
∴用水量小于等于3立方米的频率为0.85,又w为整数,
∴为使80%以上的居民在该月的用水价格为4元/立方米,w至少定为3.
(2)当w=3时,该市居民该月的人均水费估计为
(0.1×1+0.15×1.5+0.2×2+0.25×2.5+0.15×3)×4+0.15×3×4+[0.05×(3.5-3)+0.05×(4-3)+0.05×(4.5-3)]×10=7.2+1.8+1.5=10.5(元).
即该市居民该月的人均水费估计为10.5元.
类型二 用样本的数字特征估计总体的数字特征
例2 为调查甲、乙两校高三年级学生某次联考数学成绩情况,用简单随机抽样,从这两校中各抽取30名高三年级学生,以他们的数学成绩(百分制)作为样本,样本数据的茎叶图如图.
(1)若甲校高三年级每位学生被抽取的概率为0.05,求甲校高三年级学生总人数,并估计甲校高三年级这次联考数学成绩的及格率(60分及60分以上为及格);
(2)设甲、乙两校高三年级学生这次联考数学平均成绩分别为1,2,估计1-2的值.
考点 样本估计总体
题点 用样本的数字特征估计总体的数字特征
解 (1)设甲校高三年级学生总人数为n.
由题意,知=0.05,解得n=600.
样本中甲校高三年级学生数学成绩不及格的人数为5,据此估计甲校高三年级这次联考数学成绩的及格率为
1-=.
(2)设甲、乙两校样本平均数分别为,.
根据样本茎叶图知,30(-)=30-30
=(7-5)+(55+8-14)+(24-12-65)+(26-24-79)+(22-20)+92
=2+49-53-77+2+92=15.
因此-=0.5,所以1-2的估计值为0.5分.
反思与感悟 样本的数字特征分为两大类:一类是反映样本数据集中趋势的特征数,例如平均数;另一类是反映样本数据波动大小的特征数,例如方差和标准差.通常我们用样本的平均数和方差(标准差)来近似代替总体的平均数和方差(标准差),从而实现对总体的估计.
跟踪训练2 对甲、乙的学习成绩进行抽样分析,各抽5门功课,得到的观测值如下:
甲 | 60 | 80 | 70 | 90 | 70 |
乙 | 80 | 60 | 70 | 80 | 75 |
问:甲、乙谁的平均成绩好?谁的各门功课发展较平衡?
考点 样本估计总体
题点 用样本的数字特征估计总体的数字特征
解 甲的平均成绩为甲=74,乙的平均成绩为乙=73.所以甲的平均成绩好.
甲的方差是s=[(-14)2+62+(-4)2+162+(-4)2]=104,乙的方差是s=×[72+(-13)2+(-3)2+72+22]=56.
因为s>s,所以乙的各门功课发展较平衡.
类型三 变量间的相关关系
例3 理论预测某城市2020到2024年人口总数与年份的关系如下表所示:
年份202x(年) | 0 | 1 | 2 | 3 | 4 |
人口数y(十万) | 5 | 7 | 8 | 11 | 19 |
(1)请画出上表数据的散点图;
(2)指出x与y是否线性相关;
(3)若x与y线性相关,请根据上表提供的数据,用最小二乘法求出y关于x的回归方程=x+;
(4)据此估计2025年该城市人口总数.
(参数数据:0×5+1×7+2×8+3×11+4×19=132,02+12+22+32+42=30)
考点 变量间的相关关系
题点 变量间的相关关系
解 (1)数据的散点图如图:
(2)由散点图可知,样本点基本上分布在一条直线附近,故x与y呈线性相关.
(3)由表知=×(0+1+2+3+4)=2,
=×(5+7+8+11+19)=10.
∴==3.2,
=-=3.6,
∴回归方程为=3.2x+3.6.
(4)当x=5时,=19.6(十万)=196万.
故2025年该城市人口总数约为196万.
反思与感悟 对两个变量进行研究,通常是先作出两个变量之间的散点图,根据散点图直观判断两个变量是否具有线性相关关系,如果具有,就可以应用最小二乘法求线性回归方程.由于样本可以反映总体,所以可以利用所求的线性回归方程,对这两个变量所确定的总体进行估计,即根据一个变量的取值,预测另一个变量的取值.
跟踪训练3 某车间为了制定工时定额,需要确定加工零件所花费的时间,为此做了四次试验,得到的数据如下:
零件的个数x(个) | 2 | 3 | 4 | 5 |
加工的时间y(小时) | 2.5 | 3 | 4 | 4.5 |
(1)在给定的坐标系中画出表中数据的散点图;
(2)求出y关于x的线性回归方程=x+,并在坐标系中画出回归直线;
(3)试预测加工10个零件需要多少小时?
考点 变量间的相关关系
题点 变量间的相关关系
解 (1)散点图如图.
(2)由表中数据得:iyi=52.5,
=3.5,=3.5,=54,
∴ =0.7,∴=1.05,
∴=0.7x+1.05,回归直线如图所示.
(3)将x=10代入线性回归方程,
得=0.7×10+1.05=8.05,
故预测加工10个零件约需要8.05小时.
1.一个容量为80的样本中,数据的最大值是140,最小值是50,组距是10,这里将样本数据分为( )
A.10组 B.9组
C.8组 D.7组
考点 抽样方法
题点 抽样方法中的计算
答案 B
解析 组数===9.
2.现有10个数,其平均数是4,且这10个数的平方和是200,那么这组数的标准差是( )
A.1 B.2
C.3 D.4
考点 方差与标准差
题点 求标准差
答案 B
解析 设这10个数为a1,a2,…,a10,则有a+a+…+a=200,且a1+a2+…+a10=40,
所以
=
==4,∴标准差为=2.
3.某农田施肥量x(单位:kg)与小麦产量y(单位:kg)之间的回归方程是=4x+250,则当施肥量为50 kg时,可以预测小麦的产量为________kg.
考点 变量间的相关关系
题点 变量间的相关关系
答案 450
解析 直接将x=50代入回归方程中,可得=4×50+250=450.
4.如图所示是一次考试结果的频率分布直方图,则据此估计这次考试的平均分为________.
考点 平均数
题点 由表或图估计平均数
答案 75
解析 利用组中值估算平均分,则有=55×0.1+65×0.2+75×0.4+85×0.2+95×0.1=75,故估计这次考试的平均分为75.
5.从某学校的男生中随机抽取50名测量身高,被测学生身高全部介于155 cm和195 cm之间,将测量结果按如下方式分成八组;第一组[155,160),第二组[160,165),…,第八组[190,195].如图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组的人数相同,第六组的人数为4.
(1)求第七组的频率;
(2)估计该校的800名男生的身高的中位数以及身高在180 cm以上(含180 cm)的人数.
考点 样本估计总体
题点 用样本的频率分布估计总体的频率分布
解 (1)第六组的频率为=0.08,所以第七组的频率为1-0.08-5×(0.008×2+0.016+0.04×2+0.06)=0.06.
(2)身高在第一组[155,160)的频率为0.008×5=0.04,
身高在第二组[160,165)的频率为0.016×5=0.08,
身高在第三组[165,170)的频率为0.04×5=0.2,
身高在第四组[170,175)的频率为0.04×5=0.2,
由于0.04+0.08+0.2=0.32<0.5,0.04+0.08+0.2+0.2=0.52>0.5,
估计这所学校的800名男生的身高的中位数为m,则170<m<175,
由0.04+0.08+0.2+(m-170)×0.04=0.5,得m=174.5,所以可估计这所学校的800名男生的身高的中位数为174.5,
由直方图得后三组频率为0.06+0.08+0.008×5=0.18,
所以身高在180 cm以上(含180 cm)的人数为0.18×800=144.
1.用频率分布直方图解决相关问题时,应正确理解图中各个量的意义,识图掌握信息是解决该类问题的关键.频率分布直方图有以下几个特点:
1纵轴表示;2频率分布直方图中各小长方形高的比就是相应各组的频率之比;3直方图中各小长方形的面积是相应各组的频率,所有的小长方形的面积之和等于1,即频率之和为1.
2.平均数、中位数、众数与方差、标准差都是重要的数字特征,利用它们可对总体进行一种简明的描述,它们所反映的情况有着重要的实际意义,平均数、中位数、众数可描述总体的集中趋势,方差和标准差可描述波动大小.
数学必修5第三章 不等式综合与测试学案: 这是一份数学必修5第三章 不等式综合与测试学案,共9页。
人教版新课标A必修5第二章 数列综合与测试学案及答案: 这是一份人教版新课标A必修5第二章 数列综合与测试学案及答案,共13页。
数学人教版新课标A第二章 数列综合与测试学案设计: 这是一份数学人教版新课标A第二章 数列综合与测试学案设计,共9页。