还剩17页未读,
继续阅读
四川省泸州市泸县第五中学2020届高三上学期期中考试理综化学试题
展开
1.下列关于文献记载的说法正确的是
A. 《天工开物》中“世间丝麻裘褐皆具素质”,文中“丝、麻”的主要成分都是蛋白质
B. 《肘后备急方》中“青蒿一握,以水二升渍,绞取汁”,该提取过程属于化学变化
C. 《抱朴子》中“丹砂(HgS)烧之成水银,积变又还成丹砂”,描述的是升华和凝华过程
D. 《本草纲目》中“用浓酒和糟入甑,蒸令气上,用器承滴露”,涉及实验操作是蒸馏
【答案】D
【解析】
【详解】A.丝的主要成分是蛋白质,麻的主要成分是天然纤维,故A错误;B.青蒿素提取利用的是萃取原理,该过程中没有新物质生成,属于物理变化,故B错误;C.升华属于物理变化,丹砂(HgS)烧之成水银,即HgS发生分解反应生成水银,此过程为化学变化,不属于升华,故C错误;D.白酒的烧制是利用沸点不同进行分离,为蒸馏操作,故D正确;故答案为D。
2.下列关于有机物1-氧杂-2,4-环戊二烯()的说法正确的是
A. 与互为同系物 B. 二氯代物有3种
C. 所有原子都处于同一平面内 D. 1mol该有机物完全燃烧消耗5molO2
【答案】C
【解析】
【分析】
的分子式为C4H4O,共有2种等效氢,再结合碳碳双键的平面结构特征和烃的燃烧规律分析即可。
【详解】A.属于酚,而不含有苯环和酚羟基,具有二烯烃的性质,两者不可能是同系物,故A错误;B.共有2种等效氢,一氯代物是二种,二氯代物是4种,故B错误;C.中含有两个碳碳双键,碳碳双键最多可提供6个原子共平面,则中所有原子都处于同一平面内,故C正确;D.的分子式为C4H4O,1mol该有机物完全燃烧消耗的氧气的物质的量为1mol×(4+)=4.5mol,故D错误;故答案为C。
3.设NA为阿伏加德罗常数的值。下列有关叙述正确的是
A. 常温常压下,1 mol甲基(—14CD3)所含的中子数和电子数分别为11NA、9NA
B. pH=1的H2SO3溶液中,含有0.1NA个H+
C. 1 mol Fe分别与足量的稀硫酸和稀硝酸反应转移电子数均为3NA
D. 1 mol CH3COOC2H5在稀硫酸中水解可得到的乙醇分子数为NA
【答案】A
【解析】
【详解】A.一个14C中的中子数为8,一个D中的中子数为1,则1个甲基(—14CD3)所含的中子数为11,一个14C中的电子数为6,一个D中的电子数为1,则1个甲基(—14CD3)所含的电子数为9;则1 mol甲基(—14CD3)所含的中子数和电子数分别为11NA、9NA,故A正确;
B. pH=1的H2SO3溶液中,c(H+)为0.1mol/L,没有给出溶液的体积,无法根据公式n=cV计算出氢离子的物质的量,也无法计算氢离子的数目,故B错误;
C.铁和稀硫酸反应变为+2价,和足量稀硝酸反应变为+3价,故1 mol Fe分别与足量的稀硫酸和稀硝酸反应转移电子数依次为2mol、3mol,故C错误;
D.酯在酸性条件下的水解反应是可逆反应,故1 mol CH3COOC2H5在稀硫酸中水解可得到的乙醇分子数小于NA,故D错误。答案选A。
【点睛】本题考查的是与阿伏加德罗常数有关的计算。解题时注意C选项中铁和稀硫酸反应变为+2价,和足量稀硝酸反应变为+3价,故失电子数不同;D选项酯在酸性条件下的水解反应是可逆反应,可逆反应的特点是不能进行彻底,故1 mol CH3COOC2H5在稀硫酸中不会完全水解。
4.实验室处理废催化剂FeBr3溶液,得到溴的苯溶液和无水FeCl3。下列设计能达到相应实验目的的是
A. 用装置甲制取氯气
B. 用装置乙使Br-全部转化为溴单质
C. 用装置丙分液时先从下口放出水层,再从上口倒出有机层
D. 用装置丁将分液后的水层蒸发至干,再灼烧制得无水FeCl3
【答案】C
【解析】
【详解】A. 1mol/L的盐酸为稀盐酸,与二氧化锰不反应,不能制备氯气,应用浓盐酸,A项错误;
B. 图中导管的进入方向不合理,会将溶液排出装置,则不能将溴离子完全氧化,应为“长进短出”,B项错误;
C. 苯不溶于水,且密度比水小,则溴的苯溶液在上层,则用分液漏斗分液时先从下口放出水层,再从上口倒出有机层,C项正确;
D. 蒸发时促进氯化铁水解生成氢氧化铁和盐酸,而盐酸易挥发,蒸干得到Fe(OH)3,灼烧得到氧化铁,D项错误;
答案选C。
【点睛】D项是学生们的易错点,在空气中蒸干氯化铁溶液,由于氯化铁水解生成氢氧化铁和氯化氢,而氯化氢易挥发,会生成大量的氢氧化铁,最终得到氢氧化铁固体,进一步灼烧会得到氧化铁。
5.短周期元素X、Y、Z、W的原子序数依次增大,X和W为同主族元素,Z的单质能溶于W的最高价氧化物对应的水化物的稀溶液,却不溶于其浓溶液。由这四种元素中的一种或几种组成的物质存在如下转化关系,甲+乙→丙+W,其中甲是元素X的氢化物,其稀溶液可用于伤口消毒,乙为一种二元化合物,常温下0.1mol·L-1丙溶液的pH=13,下列说法错误的是
A. X和Y、W均至少能形成两种化合物
B. 乙和丙均为既含有离子键又含有共价键的离子化合物
C. 四种元素简单离子半径中Z的最小
D. 气态氢化物的稳定性:X>W
【答案】B
【解析】
【详解】短周期元素X、Y、Z、W的原子序数依次增大,Z的单质能溶于W的最高价氧化物对应的水化物的稀溶液中,不溶于其浓溶液中,说明Z为Al元素,W为S元素,因为铝在常温下能溶于稀硫酸,在浓硫酸中发生钝化;X和W为同主族元素,则X为O元素;甲是元素X的氢化物,其稀溶液可用于伤口消毒,则甲为H2O2;常温下0.1mol·L-1丙溶液的pH=13,则丙为强碱,说明X、Y、Z、W四种元素中有一种元素的氢氧化物为强碱,则Y为Na元素,则丙为NaOH;由于这四种元素中的一种或几种组成的物质存在甲+乙→丙+W的转化关系,且乙为一种二元化合物,则乙为Na2S。
A. 根据上述分析 X、Y、W分别为O、Na、S元素。X和Y能形成氧化钠、过氧化钠,X和W能形成二氧化硫、三氧化硫,即X和Y、W均至少能形成两种化合物,故A正确;
B. 通过上述分析可知,乙为硫化钠,硫化钠是只含离子键的离子化合物,丙为氢氧化钠,氢氧化钠是既含离子键又含共价键的离子化合物,故B错误;
C. W的离子核外电子层数最多,离子半径最大,X、Y、Z的离子具有相同的电子层结构,因为核外电子层数相同时,核电荷数越大半径越小,Z的核电荷数最大,离子半径最小,故C正确;
D. X和W为同主族元素,非金属性X>W,因为非金属性越强,气体氢化物越稳定,则气态氢化物的稳定性X>W,故D正确。答案选B。
6.已知过氧化氢在强碱性溶液中主要以HO2-存在。我国研究的Al-H2O2燃料电池可用于深海资源的勘查、军事侦察等国防科技领域,装置示意图如下。下列说法错误的是
A. 电池工作时,溶液中OH-通过阴离子交换膜向Al极迁移
B. Ni极的电极反应式是HO2-+2e-+H2O=3OH-
C. 电池工作结束后,电解质溶液的pH降低
D. Al电极质量减轻13.5g,电路中通过9.03×1023个电子
【答案】C
【解析】
【详解】A.根电池装置图分析,可知Al较活泼,作负极,而燃料电池中阴离子往负极移动,因而可推知OH-(阴离子)穿过阴离子交换膜,往Al电极移动,A正确;
B.Ni为正极,电子流入的一端,因而电极附近氧化性较强的氧化剂得电子,又已知过氧化氢在强碱性溶液中主要以HO2-存在,可知HO2-得电子变为OH-,故按照缺项配平的原则,Ni极的电极反应式是HO2-+2e-+H2O=3OH-,B正确;
C.根电池装置图分析,可知Al较活泼,Al失电子变为Al3+,Al3+和过量的OH-反应得到AlO2-和水,Al电极反应式为Al-3e-+4OH- = AlO2-+2H2O,Ni极的电极反应式是HO2-+2e-+H2O=3OH-,因而总反应为2Al+3HO2-=2AlO2-+H2O+ OH-,显然电池工作结束后,电解质溶液的pH升高,C错误;
D.A1电极质量减轻13.5g,即Al消耗了0.5mol,Al电极反应式Al-3e-+4OH- = AlO2-+2H2O,因而转移电子数为0.5×3NA=9.03×1023,D正确。
故答案选C。
【点睛】书写燃料电池电极反应式的步骤类似于普通原电池,在书写时应注意以下几点:1.电极反应式作为一种特殊的离子反应方程式,也必需遵循原子守恒,得失电子守恒,电荷守恒;2.写电极反应时,一定要注意电解质是什么,其中的离子要和电极反应中出现的离子相对应,在碱性电解质中,电极反应式不能出现氢离子,在酸性电解质溶液中,电极反应式不能出现氢氧根离子;3.正负两极的电极反应式在得失电子守恒的条件下,相叠加后的电池反应必须是燃料燃烧反应和燃料产物与电解质溶液反应的叠加反应式。
7.某温度下,向10 mL 0.1 mol·L-lNaCl溶液和10 mL 0.1 mol·L-lK2CrO4溶液中分别滴加0.1 mol·L-lAgNO3溶液。滴加过程中pM[-lgc(Cl-)或-lgc(CrO42-)]与所加AgNO3溶液体积之间的关系如下图所示。已知Ag2CrO4为红棕色沉淀。下列说法错误的是
A. 该温度下,Ksp(Ag2CrO4)=4×10-12
B. al、b、c三点所示溶液中c(Ag+):al>b>c
C. 若将上述NaCl溶液浓度改为0.2mol·L-1,则a1点会平移至a2点
D. 用AgNO3标准溶液滴定NaCl溶液时,可用K2CrO4溶液作指示剂
【答案】B
【解析】
【分析】
根据pM=-lgc(Cl-)或pM=-lgc(CrO42-)可知,c(CrO42-)越小,pM越大,根据图像,向10 mL 0.1 mol·L-lNaCl溶液和10 mL 0.1 mol·L-lK2CrO4溶液中分别滴加0.1 mol·L-lAgNO3溶液。当滴加10 mL0.1 mol·L-lAgNO3溶液时,氯化钠恰好反应,滴加20 mL0.1 mol·L-lAgNO3溶液时,K2CrO4恰好反应,因此al所在曲线为氯化钠,b、c所在曲线为K2CrO4,据此分析解答。
【详解】A.b点时恰好反应生成Ag2CrO4,-lgc(CrO42-)=4.0,c(CrO42-)= 10-4mol·L-l,则c(Ag+)=2× 10-4mol·L-l,该温度下,Ksp(Ag2CrO4)=c(CrO42-)×c2(Ag+)=4×10-12,故A正确;
B.al点恰好反应,-lgc(Cl-)=4.9,c(Cl-)=10-4.9mol·L-l,则c(Ag+)=10-4.9mol·L-l,b点c(Ag+)=2× 10-4mol·L-l,c点,K2CrO4过量,c(CrO42-)约为原来的,则c(CrO42-)= 0.025mol·L-l,则c(Ag+)==×10-5mol·L-l,al、b、c三点所示溶液中b点的c(Ag+)最大,故B错误;
C.温度不变,氯化银的溶度积不变,若将上述NaCl溶液浓度改为0.2mol·L-1,平衡时,-lgc(Cl-)=4.9,但需要的硝酸银溶液的体积变成原来的2倍,因此a1点会平移至a2点,故C正确;
D.根据上述分析,当溶液中同时存在Cl-和CrO42-时,加入硝酸银溶液,Cl-先沉淀,用AgNO3标准溶液滴定NaCl溶液时,可用K2CrO4溶液作指示剂,滴定至终点时,会生成Ag2CrO4为红棕色沉淀,故D正确;
答案选B。
8.用硼镁矿(Mg2B2O5·H2O,含Fe2O3杂质)制取硼酸(H3BO3)晶体的流程如下。
同答下列问题:
(1)沉淀的主要成分为____________________(填化学式)。
(2)写出生成Na2B4O5(OH)4·8H2O的化学方程式_________________________________。
(3)检验H3BO3晶体洗涤干净的操作是______________________________。
(4)已知:
实验室利用此原理测定硼酸样品中硼酸的质量分数。准确称取0.3000g样品于锥形瓶中,加入过量甘油加热使其充分溶解并冷却,滴入1~2滴酚酞试液,然后用0.2000mol·L-1NaOH标准溶液滴定至终点,消耗NaOH溶液22.00mL。
①滴定终点的现象为________________________。
②该硼酸样品的纯度为_________________%(保留1位小数)。
(5)电解NaB(OH)4溶液制备H3BO3的工作原理如下图。
①b膜为________交换膜(填“阴离子”或“阳离子”)。理论上每生成1molH3BO3,两极室共生成__________L气体(标准状况)。
②N室中,进口和出口NaOH溶液的浓度:a%_________b%(填“>”或“<”)。
【答案】 (1). Mg(OH)2、Fe2O3 (2). 4NaB(OH)4+2CO2+3H2O=Na2B4O5(OH)4▪8H2O↓+2NaHCO3 (3). 取最后一次洗涤液少许于试管中,滴加硝酸酸化的硝酸银溶液,若无明显现象,说明洗涤干净 (4). 溶液由无色变为浅红色,且半分钟内不褪色 (5). 90.9 (6). 阴离子 (7). 16.8 (8). <
【解析】
【分析】
硼镁矿与氢氧化钠溶液反应,过滤除去沉淀Mg(OH)2和Fe2O3,NaB(OH)4溶液中通入过量的二氧化碳,得到Na2B4O5(OH)4•8H2O与为NaHCO3,过滤分离,由于硼酸的酸性小于盐酸,符合复分解反应由强酸制弱酸的原理,且硼酸的溶解度较小,故Na2B4O5(OH)4•8H2O晶体与盐酸反应得到硼酸,冷却结晶、过滤、洗涤、干燥得到硼酸(H3BO3)晶体。
(1)镁离子可以生成氢氧化镁沉淀,三氧化二铁不与氢氧化钠反应;
(2)反应物NaB(OH)4和过量CO2,生成物Na2B4O5(OH)4·8H2O和碳酸氢钠,写出化学方程式;
(3)取最后一次洗涤液,利用硝酸银检验;
(4) ①根据酚酞遇酸不变色,遇碱变红来判断;
②利用关系式法进行计算;
(5)M室氢氧根离子失电子,氢离子经过a膜进入产品室,a膜为阳离子交换膜;原料室中B(OH)4-通过b膜进入产品室遇M室进入的H+反应生成H3BO3,b膜为阴离子交换膜;原料室Na+经过c膜进入N室,c膜为阳离子交换膜,N室氢离子得电子生成氢气,氢氧根离子浓度增大。即M室生成氧气,消耗水,N室生成氢氧化钠和氢气,据此分析。
【详解】(1) 硼镁矿与氢氧化钠反应,镁离子生成氢氧化镁沉淀,Fe2O3不与氢氧化钠反应,因此沉淀的主要成分为Mg(OH)2、Fe2O3;
答案:Mg(OH)2、Fe2O3
(2) 反应物NaB(OH)4和过量CO2,生成物Na2B4O5(OH)4·8H2O和碳酸氢钠,化学方程式为4NaB(OH)4+2CO2+3H2O=Na2B4O5(OH)4▪8H2O↓+2NaHCO3;
答案:4NaB(OH)4+2CO2+3H2O=Na2B4O5(OH)4▪8H2O↓+2NaHCO3
(3)检验H3BO3晶体洗涤干净的操作是取最后一次洗涤液少许于试管中,滴加硝酸酸化的硝酸银溶液,若无明显现象,说明洗涤干净;
答案:取最后一次洗涤液少许于试管中,滴加硝酸酸化的硝酸银溶液,若无明显现象,说明洗涤干净
(4)①滴定终点的现象为溶液由无色变为浅红色,且半分钟内不褪色;
答案:溶液由无色变浅红色,且半分钟内不褪色
②H3BO3~NaOH
1mol 1mol
n(H3BO3)0.2000mol/L×22.00×10-3L
得n(H3BO3)=0.0044mol
m(H3BO3)= n(H3BO3)×M(H3BO3)=0.0044mol×62g/mol=0.2728g
纯度为×100%=90.9%
(5)M室氢氧根离子失电子生成氧气,氢离子经过a膜进入产品室,a膜为阳离子交换膜;原料室中B(OH)4-通过b膜进入产品室遇M室进入的H+反应生成H3BO3,b膜为阴离子交换膜;原料室Na+经过c膜进入N室,c膜为阳离子交换膜,N室氢离子得电子生成氢气,氢氧根离子浓度逐渐增大。
①由上面分析可知b膜为阴离子交换膜,因为H++ B(OH)4-=H3BO3+H2O,因此转移1mol电子生成1mol H3BO3;列关系式
1mole-~1/4O2(M室)~1mol H3BO3~1/2H2(N室)
理论上每生成1molH3BO3,两极室共生成(1/2+1/4)mol×22.4L/mol=16.8L气体(标准状况);
②由上面分析可知N室中,进口和出口NaOH溶液的浓度:a% 答案:阴离子 16.8 <
9.亚硝酸钠(NaNO2)是一种常用的食品添加剂,使用时需严格控制用量。实验室以2NO+Na2O2=2NaNO2为原理,利用下列装置制取NaNO2(夹持和加热仪器略)。
已知:①酸性KMnO4溶液可将NO及NO2-氧化为NO3-,MnO4-被还原为Mn2+。
②HNO2具有不稳定性:2HNO2=NO2↑+NO↑+H2O。
回答下列问题:
(1)按气流方向连接仪器接口______________(填接口字母)。
(2)实验过程中C装置内观察到的现象是___________________________。
(3)Na2O2充分反应后,测定NaNO2含量:称取反应后B中固体样品3.45g溶于蒸馏水,冷却后用0.50mol· L-1酸性KMnO4标准液滴定。重复三次,标准液平均用量为20.00mL。
①该测定实验需要用到下列仪器中的___________(填序号)。
a.锥形瓶 b.容量瓶 c.胶头滴管 d.酸式滴定管 e.碱式滴定管 f.玻璃棒
②假定其他物质不与KMnO4反应,则固体样品中NaNO2的纯度为____%。
③实验得到NaNO2的含量明显偏低,分析样品中含有的主要杂质为_____(填化学式)。为提高产品含量,对实验装置的改进是在B装置之前加装盛有_____(填药品名称)的______(填仪器名称)。
(4)设计一个实验方案证明酸性条件下NaNO2具有氧化性________________________。
(提供的试剂:0.10mol·L-1NaNO2溶液、KMnO4溶液、0.10mol·L-1KI溶液、淀粉溶液、稀硝酸、稀硫酸)
【答案】 (1). aedbc(或cb)f (2). 固体逐渐溶解,溶液变为蓝色,有无色气泡产生 (3). adf (4). 50% (5). Na2CO3、NaOH (6). 碱石灰(或氢氧化钠固体) (7). 干燥管(或U形管) (8). 取少量KI溶液和NaNO2溶液于试管,滴加几滴淀粉溶液不变色,然后滴加一定量稀硫酸,溶液变蓝,证明酸性条件下NaNO2具有氧化性(或取少量KI溶液和稀硫酸于试管,然后滴加几滴淀粉溶液不变色,滴加NaNO2溶液,溶液变为蓝色,证明酸性条件下NaNO2具有氧化性)
【解析】
【分析】
本题表面考查了2NO+Na2O2=2NaNO2,该反应是陌生反应,但实际主要以基础知识为主,例如NO、Na2O2,NO2-等性质,本题综合性强,难度偏大。
【详解】(1)A中浓硝酸与炭反应生成NO2,NO2通入C装置可产生NO,因而按气流方向连接仪器接口aed,注意长进短出,然后NO和B中Na2O2反应,最后D为除杂装置,因而后续连接顺序为bc(或cb)f,该处答案为aedbc(或cb)f;
(2)NO2与水反应可得稀硝酸和NO,稀硝酸(包含挥发的硝酸)与Cu反应得到硝酸铜和NO,NO为无色气体,因而C中现象为固体逐渐溶解,溶液变为蓝色,有无色气泡产生;
(3)①酸性KMnO4标准液有腐蚀性,因而选用酸式滴定管,锥形瓶盛放待测液,玻璃棒溶解和转移固体,因而选adf;
②高锰酸钾与亚硝酸钠的离子方程式为2MnO4-+5NO2-+6H+=2Mn2++5NO3-+3H2O,n(NO2-)=mol=0.025mol,m(NaNO2)=0.025mol×69g/mol=1.725g,则固体样品中NaNO2的纯度为×100%=50%;
③碳和浓硝酸反应得到CO2,同时C中会有水蒸气进入B中,CO2和水分别与Na2O2反应得到Na2CO3、NaOH,样品中含有的主要杂质为Na2CO3、NaOH,同时除去CO2和H2O,可使用碱石灰(或氢氧化钠固体),该药品可装在干燥管内或U形管中;
(4)要想证明酸性条件下NaNO2具有氧化性,需要选用合适的还原剂(如KI溶液)与之反应,并且能够观察到明显的反应现象(如淀粉遇碘变蓝),根据提供的试剂可选用0.10mol·L-1NaNO2溶液、0.10mol·L-1KI溶液、淀粉溶液、稀硫酸,注意用稀硫酸酸化,稀硝酸有强氧化性干扰实验。因而实验过程为取少量KI溶液和NaNO2溶液于试管,滴加几滴淀粉溶液不变色,然后滴加一定量稀硫酸,溶液变蓝,证明酸性条件下NaNO2具有氧化性(或取少量KI溶液和稀硫酸于试管,然后滴加几滴淀粉溶液不变色,滴加NaNO2溶液,溶液变为蓝色,证明酸性条件下NaNO2具有氧化性)。
10.CH4超干重整CO2技术可得到富含CO的化工原料。回答下列问题:
(1)CH4超干重整CO2催化转化如图所示:
①已知相关反应的能量变化如图所示:
过程Ⅰ的热化学方程式为________。
②关于上述过程Ⅱ的说法不正确的是________(填序号)。
a.实现了含碳物质与含氢物质的分离
b.可表示为CO2+H2=H2O(g)+CO
c.CO未参与反应
d.Fe3O4、CaO为催化剂,降低了反应的ΔH
③其他条件不变,在不同催化剂(Ⅰ、Ⅱ、Ⅲ)作用下,反应CH4(g)+CO2(g)=2CO(g)+2H2(g)进行相同时间后,CH4的转化率随反应温度的变化如图所示。a点所代表的状态________(填“是”或“不是”)平衡状态;b点CH4的转化率高于c点,原因是________。
(2)在一刚性密闭容器中,CH4和CO2的分压分别为20kPa、25kPa,加入Ni/α-Al2O3催化剂并加热至1123K使其发生反应CH4(g)+CO2(g)=2CO(g)+2H2(g)。
①研究表明CO的生成速率υ(CO)=1.3×10-2·p(CH4)·p(CO2)mol·g-1·s-1,某时刻测得p(CO)=20kPa,则p(CO2)=________kPa,υ(CO)=________mol·g-1·s-1。
②达到平衡后测得体系压强是起始时的1.8倍,则该反应的平衡常数的计算式为Kp=________(kPa)2。(用各物质的分压代替物质的量浓度计算)
(3)CH4超干重整CO2得到的CO经偶联反应可制得草酸(H2C2O4)。常温下,向某浓度的草酸溶液中加入一定浓度的NaOH溶液,所得溶液中,则此时溶液的pH=________。(已知常温下H2C2O4的Ka1=6×10-2,Ka2=6×10-5,lg6=0.8)
【答案】 (1). CH4(g)+CO2(g)=2CO(g)+2H2(g) ΔH=247.4kJ·mol-1 (2). cd (3). 不是 (4). b和c都未达平衡,b点温度高,反应速率快,相同时间内转化率高 (5). 15 (6). 1.95 (7). (8). 2.7
【解析】
分析】
由能量-反应进程曲线得热化学方程式,应用盖斯定律可得过程I的热化学方程式。过程II中进入循环的物质是最初反应物,出循环的物质是最终生成物,可得总反应方程式。恒温恒容时组分气体的分压与其物质的量成正比,故用分压代替物质的量进行计算。草酸溶液与NaOH溶液混合后,其两步电离平衡仍然存在,据电离常数表达式可求特定条件下溶液的pH。
【详解】(1)①据CH4超干重整CO2的催化转化图,过程I的化学反应为CH4(g)+CO2(g)=2CO(g)+2H2(g)。由能量-反应进程曲线得热化学方程式:
CH4(g)+H2O(g)=CO(g)+3H2(g) ΔH=+206.2kJ·mol-1 (i)
CO2(g)+4H2(g)=CH4(g)+2H2O(g) ΔH=-165kJ·mol-1 (ii)
(i)×2+(ii)得过程I的热化学方程式:CH4(g)+CO2(g)=2CO(g)+2H2(g) ΔH=247.4kJ·mol-1
②过程Ⅱ物质变化为:左上(CO、H2、CO2)+ 右下(惰性气体)→ 左下(H2O)+ 右上(CO、惰性气体),总反应为H2+CO2=H2O+CO。Fe3O4、CaO为总反应的催化剂,能降低反应的活化能,但不能改变反应的ΔH。故ab正确,cd错误。
③通常,催化剂能加快反应速率,缩短反应到达平衡的时间。但催化剂不能使平衡发生移动,即不能改变平衡转化率。若图中a点为化学平衡,则保持温度不变(800℃),将催化剂II换成I或III,CH4转化率应不变,故a点不是化学平衡。
同理,图中b、c两点都未达到化学平衡。据题意,b、c两点只有温度不同,b点温度较高,反应速率快,相同时间内CH4转化率高。
(2)①据气态方程PV=nRT,恒温恒容时某组分气体的分压与其物质的量成正比。则反应中分压为
1123K恒容时,CH4(g)+CO2(g)=2CO(g)+2H2(g)
起始分压/kPa: 20 25 0 0
改变分压/kPa: 10 10 20 20
某时分压/kPa: 10 15 20 20
即某时刻p(CO2)=15kPa,p(CH4)=10kPa。代入υ(CO)=1.3×10-2·p(CH4)·p(CO2)mol·g-1·s-1=1.95mol·g-1·s-1。
②设达到平衡时CH4的改变分压为x kPa,
1123K恒容时,CH4(g)+CO2(g)=2CO(g)+2H2(g)
起始分压/kPa: 20 25 0 0
改变分压/kPa: x x 2x 2x
平衡分压/kPa: 20-x 25-x 2x 2x
据题意,有=1.8,解得x=18。CH4(g)、CO2(g)、CO(g)、H2(g)的平衡分压依次是2 kPa、7 kPa、36 kPa、36 kPa,代入Kp==(kPa)2。
(3)常温下,草酸溶液与NaOH溶液混合,所得混合溶液中仍存在分步电离:
H2C2O4H++HC2O4- Ka1=
HC2O4-H++C2O42- Ka2=
当时,Ka1·Ka2=。==6×10-3.5 mol/L,pH=2.7。
【点睛】一定温度下,可逆反应建立平衡时,用平衡浓度求得浓度平衡常数Kc,用平衡分压求得压力平衡常数Kp,它们可通过气态方程进行换算。
11.含有N、P、Fe、Ti等元素的新型材料有着广泛的用途。
(1)基态Fe原子未成对电子数为______个;基态Ti原子的价电子排布图是_____________。
(2)意大利罗马大学的:FuNvio Cacace等人获得了极具理论研究意义的N4分子,其中氮原子的轨道杂化形式为__________________________。
(3)比较气态氢化物膦(PH3)和氨(NH3)的键角:PH3________NH3(填“大于”、“小于”或“等于”),主要原因为____________________________________________________________。
(4)半夹心结构催化剂M能催化乙烯、丙烯、苯乙烯的聚合,其结构如图所示。
①组成M的元素中,电负性最大的是___________(填名称)。
②M中含有_________(填标号)。
A π键 B σ键
C 离子键 D 配位键
(5)已知金刚石的晶胞沿其体对角线垂直在纸平面上的投影图如下图B所示,则金属铁晶胞沿其体对角线垂直在纸平面上的投影图应该是图__________(填标号)。
(6)某种磁性氮化铁的晶胞结构如图所示,其中距离铁原子最近的铁原子的个数为____________,氮化铁晶胞底边长为a cm,高为c cm,则这种磁性氮化铁的晶体密度为__________g·cm-3(用含a、c和NA的计算式表示)。
【答案】 (1). 4 (2). (3). sp3 (4). 小于 (5). 电负性N强于P,中心原子的电负性越大,成键电子对离中心原子越近,成键电子对之间距离越小,成键电子对之间的排斥力增大,键角变大 (6). 氧 (7). ABD (8). A (9). 12 (10).
【解析】
【详解】(1) Fe为26号元素,基态Fe的核外电子排布式为1s22s22p63s23p63d64s2,基态原子未成对电子数为4个;Ti为22号元素,基态Ti的核外电子排布式为1s22s22p63s23p63d24s2,所以基态Ti原子的价电子排布图是;答案:4;。
(2)N4分子的空间构型与P4类似,4个N原子形成正四面体构型,每个N原子形成3个N-N键,还含有1对孤电子对,杂化轨道数目为4,故N原子采取sp3杂化;答案:sp3。
(3) 因为电负性N强于P,中心原子的电负性越大,成键电子对离中心原子越近,成键电子对之间距离越小,成键电子对之间的排斥力增大,键角变大,所以PH3小于NH3。答案:小于;电负性N强于P,中心原子的电负性越大,成键电子对离中心原子越近,成键电子对之间距离越小,成键电子对之间的排斥力增大,键角变大。
(4) ①组成M的元素有Ti、C、H、O、Cl ,其中O的非金属性最强,非金属性越强电负性越大,所以电负性最大的是氧;答案:氧。
②M中有碳碳双键、碳碳单键、C—H键、C—O键等,单键为键、 双键中含1个键和1个π键;根据M的结构知Ti与O之间有配位键,没有离子键,故选ABD。
(5) )由金刚石的晶胞结构可知,金刚石的晶胞相当于一个大的体心立方堆积中套一个小的体心立方堆积,金属铁的晶胞为体心立方堆积,根据金刚石的晶胞沿其体对角线垂直在纸平面上的投影图知,金属铁的晶胞沿其体对角线垂直在纸面上的投影图为A。答案:A。
(6) 根据均摊法,在氮化铁晶胞中,含有N原子数为2,Fe原子数为2×1/2+12×1/6+3=6,所以氮化铁的化学式Fe3N,其中铁原子最近的铁原子的个数为12;若晶胞底边长为acm,高为ccm,则晶胞的体积是a2ccm3,所以这种磁性氮化铁的晶体密度为g÷a2ccm3=g/cm3;答案:12; 。
12.白头翁素具有显著的抗菌作用,其合成路线如图所示:
已知:
①RCH2BrRCH=CHR’
②2RCH=CHR’
(以上R、R’代表氢、烷基)
(1)白头翁素的分子式为____。
(2)试剂a为______,E→F的反应类型为________。
(3)F的结构简式为_________。
(4)C中含有的官能团名称为________。
(5) A→B反应的化学方程式为_________。
(6)F与足量氢气加成得到G,G有多种同分异构体,其中属于链状羧酸类有____种。
(7)以乙烯为起始原料,选用必要的无机试剂合成的路线为____(用结构简式表示有机物,用箭头表示转化关系,箭头上注明试剂和反应条件)。
【答案】 (1). C10H8O4 (2). 浓硫酸 (3). 消去反应 (4). (5). 羧基、羟基、碳碳双键 (6). +H2O (7). 8 (8). 第一种路线:
第二种路线:CH2=CH2CH2BrCH2BrCH2=CH-CH=CH2CH3CH=CHCH3
【解析】
【分析】
(1)~(6)A发生加成反应生成的B为HOOCCH(OH)CH2CH2Br,B和HCHO发生已知①的反应生成C:,C发生消去反应生成D:,醇发生消去反应需要在浓硫酸作催化剂、加热条件下进行,所以试剂a为浓硫酸;D与I2反应生成E,根据F的分子式和白头翁素的结构简式,F发生已知②的反应生成白头翁素,则F为,E发生消去反应生成F,卤代烃在NaOH醇溶液、加热条件下发生消去反应,则b为NaOH醇溶液。
(7)以乙烯为起始原料合成,可由CH3CH=CHCH3发生已知②的反应得到;CH3CH=CHCH3可由CH3CH2Br与CH3CHO发生已知①的反应获得,CH2=CH2与HBr发生加成反应生成CH3CH2Br,乙烯与水发生加成反应得乙醇,乙醇催化氧化可制得CH3CHO;CH3CH=CHCH3也可由CH2=CHCH=CH2和氢气发生1,4—加成反应得到,CH2=CHCH=CH2可由CH2BrCH2Br和HCHO发生已知①的反应得到,CH2BrCH2Br可由CH2=CH2和溴发生加成反应得到。
【详解】(1)根据结构简式确定白头翁素的分子式为C10H8O4;
(2)C→D为醇的消去反应,则试剂a为浓硫酸,E→F的反应类型为消去反应;
(3)F的结构简式为;
(4) C的结构简式为,C中含有的官能团名称为羧基、碳碳双键、羟基;
(5)A发生加成反应生成B,A→B反应的化学方程式为;
(6)F为,F与足量氢气加成得到G,G的分子式为C5H8O2,G的不饱和度是2,G有多种同分异构体,其中属于链状羧酸类,羧基的不饱和度是1,说明含有-COOH、碳碳双键;如果碳链结构为C=C-C-C,有4种;如果碳链结构为C-C=C-C,有2种;如果碳链结构为,有2种,所以符合条件的有8种;
(7)以乙烯为起始原料合成,可由CH3CH=CHCH3发生已知②的反应得到;CH3CH=CHCH3可由CH3CH2Br与CH3CHO发生已知①的反应获得,CH2=CH2与HBr发生加成反应生成CH3CH2Br,乙烯与水发生加成反应得乙醇,乙醇催化氧化可制得CH3CHO;CH3CH=CHCH3也可由CH2=CHCH=CH2和氢气发生1,4—加成反应得到,CH2=CHCH=CH2可由CH2BrCH2Br和HCHO发生已知①的反应得到,CH2BrCH2Br可由CH2=CH2和溴发生加成反应得到;其合成路线为,也可能是合成路线为:。
【点睛】本题考查有机物推断和合成,根据流程图,结合题干信息及反应条件、进行物质推断是关键,难点是同分异构体种类判断,利用不饱和度确定链状结构中存在的官能团,题目侧重考查学生的分析推断及知识综合运用、知识迁移能力。
1.下列关于文献记载的说法正确的是
A. 《天工开物》中“世间丝麻裘褐皆具素质”,文中“丝、麻”的主要成分都是蛋白质
B. 《肘后备急方》中“青蒿一握,以水二升渍,绞取汁”,该提取过程属于化学变化
C. 《抱朴子》中“丹砂(HgS)烧之成水银,积变又还成丹砂”,描述的是升华和凝华过程
D. 《本草纲目》中“用浓酒和糟入甑,蒸令气上,用器承滴露”,涉及实验操作是蒸馏
【答案】D
【解析】
【详解】A.丝的主要成分是蛋白质,麻的主要成分是天然纤维,故A错误;B.青蒿素提取利用的是萃取原理,该过程中没有新物质生成,属于物理变化,故B错误;C.升华属于物理变化,丹砂(HgS)烧之成水银,即HgS发生分解反应生成水银,此过程为化学变化,不属于升华,故C错误;D.白酒的烧制是利用沸点不同进行分离,为蒸馏操作,故D正确;故答案为D。
2.下列关于有机物1-氧杂-2,4-环戊二烯()的说法正确的是
A. 与互为同系物 B. 二氯代物有3种
C. 所有原子都处于同一平面内 D. 1mol该有机物完全燃烧消耗5molO2
【答案】C
【解析】
【分析】
的分子式为C4H4O,共有2种等效氢,再结合碳碳双键的平面结构特征和烃的燃烧规律分析即可。
【详解】A.属于酚,而不含有苯环和酚羟基,具有二烯烃的性质,两者不可能是同系物,故A错误;B.共有2种等效氢,一氯代物是二种,二氯代物是4种,故B错误;C.中含有两个碳碳双键,碳碳双键最多可提供6个原子共平面,则中所有原子都处于同一平面内,故C正确;D.的分子式为C4H4O,1mol该有机物完全燃烧消耗的氧气的物质的量为1mol×(4+)=4.5mol,故D错误;故答案为C。
3.设NA为阿伏加德罗常数的值。下列有关叙述正确的是
A. 常温常压下,1 mol甲基(—14CD3)所含的中子数和电子数分别为11NA、9NA
B. pH=1的H2SO3溶液中,含有0.1NA个H+
C. 1 mol Fe分别与足量的稀硫酸和稀硝酸反应转移电子数均为3NA
D. 1 mol CH3COOC2H5在稀硫酸中水解可得到的乙醇分子数为NA
【答案】A
【解析】
【详解】A.一个14C中的中子数为8,一个D中的中子数为1,则1个甲基(—14CD3)所含的中子数为11,一个14C中的电子数为6,一个D中的电子数为1,则1个甲基(—14CD3)所含的电子数为9;则1 mol甲基(—14CD3)所含的中子数和电子数分别为11NA、9NA,故A正确;
B. pH=1的H2SO3溶液中,c(H+)为0.1mol/L,没有给出溶液的体积,无法根据公式n=cV计算出氢离子的物质的量,也无法计算氢离子的数目,故B错误;
C.铁和稀硫酸反应变为+2价,和足量稀硝酸反应变为+3价,故1 mol Fe分别与足量的稀硫酸和稀硝酸反应转移电子数依次为2mol、3mol,故C错误;
D.酯在酸性条件下的水解反应是可逆反应,故1 mol CH3COOC2H5在稀硫酸中水解可得到的乙醇分子数小于NA,故D错误。答案选A。
【点睛】本题考查的是与阿伏加德罗常数有关的计算。解题时注意C选项中铁和稀硫酸反应变为+2价,和足量稀硝酸反应变为+3价,故失电子数不同;D选项酯在酸性条件下的水解反应是可逆反应,可逆反应的特点是不能进行彻底,故1 mol CH3COOC2H5在稀硫酸中不会完全水解。
4.实验室处理废催化剂FeBr3溶液,得到溴的苯溶液和无水FeCl3。下列设计能达到相应实验目的的是
A. 用装置甲制取氯气
B. 用装置乙使Br-全部转化为溴单质
C. 用装置丙分液时先从下口放出水层,再从上口倒出有机层
D. 用装置丁将分液后的水层蒸发至干,再灼烧制得无水FeCl3
【答案】C
【解析】
【详解】A. 1mol/L的盐酸为稀盐酸,与二氧化锰不反应,不能制备氯气,应用浓盐酸,A项错误;
B. 图中导管的进入方向不合理,会将溶液排出装置,则不能将溴离子完全氧化,应为“长进短出”,B项错误;
C. 苯不溶于水,且密度比水小,则溴的苯溶液在上层,则用分液漏斗分液时先从下口放出水层,再从上口倒出有机层,C项正确;
D. 蒸发时促进氯化铁水解生成氢氧化铁和盐酸,而盐酸易挥发,蒸干得到Fe(OH)3,灼烧得到氧化铁,D项错误;
答案选C。
【点睛】D项是学生们的易错点,在空气中蒸干氯化铁溶液,由于氯化铁水解生成氢氧化铁和氯化氢,而氯化氢易挥发,会生成大量的氢氧化铁,最终得到氢氧化铁固体,进一步灼烧会得到氧化铁。
5.短周期元素X、Y、Z、W的原子序数依次增大,X和W为同主族元素,Z的单质能溶于W的最高价氧化物对应的水化物的稀溶液,却不溶于其浓溶液。由这四种元素中的一种或几种组成的物质存在如下转化关系,甲+乙→丙+W,其中甲是元素X的氢化物,其稀溶液可用于伤口消毒,乙为一种二元化合物,常温下0.1mol·L-1丙溶液的pH=13,下列说法错误的是
A. X和Y、W均至少能形成两种化合物
B. 乙和丙均为既含有离子键又含有共价键的离子化合物
C. 四种元素简单离子半径中Z的最小
D. 气态氢化物的稳定性:X>W
【答案】B
【解析】
【详解】短周期元素X、Y、Z、W的原子序数依次增大,Z的单质能溶于W的最高价氧化物对应的水化物的稀溶液中,不溶于其浓溶液中,说明Z为Al元素,W为S元素,因为铝在常温下能溶于稀硫酸,在浓硫酸中发生钝化;X和W为同主族元素,则X为O元素;甲是元素X的氢化物,其稀溶液可用于伤口消毒,则甲为H2O2;常温下0.1mol·L-1丙溶液的pH=13,则丙为强碱,说明X、Y、Z、W四种元素中有一种元素的氢氧化物为强碱,则Y为Na元素,则丙为NaOH;由于这四种元素中的一种或几种组成的物质存在甲+乙→丙+W的转化关系,且乙为一种二元化合物,则乙为Na2S。
A. 根据上述分析 X、Y、W分别为O、Na、S元素。X和Y能形成氧化钠、过氧化钠,X和W能形成二氧化硫、三氧化硫,即X和Y、W均至少能形成两种化合物,故A正确;
B. 通过上述分析可知,乙为硫化钠,硫化钠是只含离子键的离子化合物,丙为氢氧化钠,氢氧化钠是既含离子键又含共价键的离子化合物,故B错误;
C. W的离子核外电子层数最多,离子半径最大,X、Y、Z的离子具有相同的电子层结构,因为核外电子层数相同时,核电荷数越大半径越小,Z的核电荷数最大,离子半径最小,故C正确;
D. X和W为同主族元素,非金属性X>W,因为非金属性越强,气体氢化物越稳定,则气态氢化物的稳定性X>W,故D正确。答案选B。
6.已知过氧化氢在强碱性溶液中主要以HO2-存在。我国研究的Al-H2O2燃料电池可用于深海资源的勘查、军事侦察等国防科技领域,装置示意图如下。下列说法错误的是
A. 电池工作时,溶液中OH-通过阴离子交换膜向Al极迁移
B. Ni极的电极反应式是HO2-+2e-+H2O=3OH-
C. 电池工作结束后,电解质溶液的pH降低
D. Al电极质量减轻13.5g,电路中通过9.03×1023个电子
【答案】C
【解析】
【详解】A.根电池装置图分析,可知Al较活泼,作负极,而燃料电池中阴离子往负极移动,因而可推知OH-(阴离子)穿过阴离子交换膜,往Al电极移动,A正确;
B.Ni为正极,电子流入的一端,因而电极附近氧化性较强的氧化剂得电子,又已知过氧化氢在强碱性溶液中主要以HO2-存在,可知HO2-得电子变为OH-,故按照缺项配平的原则,Ni极的电极反应式是HO2-+2e-+H2O=3OH-,B正确;
C.根电池装置图分析,可知Al较活泼,Al失电子变为Al3+,Al3+和过量的OH-反应得到AlO2-和水,Al电极反应式为Al-3e-+4OH- = AlO2-+2H2O,Ni极的电极反应式是HO2-+2e-+H2O=3OH-,因而总反应为2Al+3HO2-=2AlO2-+H2O+ OH-,显然电池工作结束后,电解质溶液的pH升高,C错误;
D.A1电极质量减轻13.5g,即Al消耗了0.5mol,Al电极反应式Al-3e-+4OH- = AlO2-+2H2O,因而转移电子数为0.5×3NA=9.03×1023,D正确。
故答案选C。
【点睛】书写燃料电池电极反应式的步骤类似于普通原电池,在书写时应注意以下几点:1.电极反应式作为一种特殊的离子反应方程式,也必需遵循原子守恒,得失电子守恒,电荷守恒;2.写电极反应时,一定要注意电解质是什么,其中的离子要和电极反应中出现的离子相对应,在碱性电解质中,电极反应式不能出现氢离子,在酸性电解质溶液中,电极反应式不能出现氢氧根离子;3.正负两极的电极反应式在得失电子守恒的条件下,相叠加后的电池反应必须是燃料燃烧反应和燃料产物与电解质溶液反应的叠加反应式。
7.某温度下,向10 mL 0.1 mol·L-lNaCl溶液和10 mL 0.1 mol·L-lK2CrO4溶液中分别滴加0.1 mol·L-lAgNO3溶液。滴加过程中pM[-lgc(Cl-)或-lgc(CrO42-)]与所加AgNO3溶液体积之间的关系如下图所示。已知Ag2CrO4为红棕色沉淀。下列说法错误的是
A. 该温度下,Ksp(Ag2CrO4)=4×10-12
B. al、b、c三点所示溶液中c(Ag+):al>b>c
C. 若将上述NaCl溶液浓度改为0.2mol·L-1,则a1点会平移至a2点
D. 用AgNO3标准溶液滴定NaCl溶液时,可用K2CrO4溶液作指示剂
【答案】B
【解析】
【分析】
根据pM=-lgc(Cl-)或pM=-lgc(CrO42-)可知,c(CrO42-)越小,pM越大,根据图像,向10 mL 0.1 mol·L-lNaCl溶液和10 mL 0.1 mol·L-lK2CrO4溶液中分别滴加0.1 mol·L-lAgNO3溶液。当滴加10 mL0.1 mol·L-lAgNO3溶液时,氯化钠恰好反应,滴加20 mL0.1 mol·L-lAgNO3溶液时,K2CrO4恰好反应,因此al所在曲线为氯化钠,b、c所在曲线为K2CrO4,据此分析解答。
【详解】A.b点时恰好反应生成Ag2CrO4,-lgc(CrO42-)=4.0,c(CrO42-)= 10-4mol·L-l,则c(Ag+)=2× 10-4mol·L-l,该温度下,Ksp(Ag2CrO4)=c(CrO42-)×c2(Ag+)=4×10-12,故A正确;
B.al点恰好反应,-lgc(Cl-)=4.9,c(Cl-)=10-4.9mol·L-l,则c(Ag+)=10-4.9mol·L-l,b点c(Ag+)=2× 10-4mol·L-l,c点,K2CrO4过量,c(CrO42-)约为原来的,则c(CrO42-)= 0.025mol·L-l,则c(Ag+)==×10-5mol·L-l,al、b、c三点所示溶液中b点的c(Ag+)最大,故B错误;
C.温度不变,氯化银的溶度积不变,若将上述NaCl溶液浓度改为0.2mol·L-1,平衡时,-lgc(Cl-)=4.9,但需要的硝酸银溶液的体积变成原来的2倍,因此a1点会平移至a2点,故C正确;
D.根据上述分析,当溶液中同时存在Cl-和CrO42-时,加入硝酸银溶液,Cl-先沉淀,用AgNO3标准溶液滴定NaCl溶液时,可用K2CrO4溶液作指示剂,滴定至终点时,会生成Ag2CrO4为红棕色沉淀,故D正确;
答案选B。
8.用硼镁矿(Mg2B2O5·H2O,含Fe2O3杂质)制取硼酸(H3BO3)晶体的流程如下。
同答下列问题:
(1)沉淀的主要成分为____________________(填化学式)。
(2)写出生成Na2B4O5(OH)4·8H2O的化学方程式_________________________________。
(3)检验H3BO3晶体洗涤干净的操作是______________________________。
(4)已知:
实验室利用此原理测定硼酸样品中硼酸的质量分数。准确称取0.3000g样品于锥形瓶中,加入过量甘油加热使其充分溶解并冷却,滴入1~2滴酚酞试液,然后用0.2000mol·L-1NaOH标准溶液滴定至终点,消耗NaOH溶液22.00mL。
①滴定终点的现象为________________________。
②该硼酸样品的纯度为_________________%(保留1位小数)。
(5)电解NaB(OH)4溶液制备H3BO3的工作原理如下图。
①b膜为________交换膜(填“阴离子”或“阳离子”)。理论上每生成1molH3BO3,两极室共生成__________L气体(标准状况)。
②N室中,进口和出口NaOH溶液的浓度:a%_________b%(填“>”或“<”)。
【答案】 (1). Mg(OH)2、Fe2O3 (2). 4NaB(OH)4+2CO2+3H2O=Na2B4O5(OH)4▪8H2O↓+2NaHCO3 (3). 取最后一次洗涤液少许于试管中,滴加硝酸酸化的硝酸银溶液,若无明显现象,说明洗涤干净 (4). 溶液由无色变为浅红色,且半分钟内不褪色 (5). 90.9 (6). 阴离子 (7). 16.8 (8). <
【解析】
【分析】
硼镁矿与氢氧化钠溶液反应,过滤除去沉淀Mg(OH)2和Fe2O3,NaB(OH)4溶液中通入过量的二氧化碳,得到Na2B4O5(OH)4•8H2O与为NaHCO3,过滤分离,由于硼酸的酸性小于盐酸,符合复分解反应由强酸制弱酸的原理,且硼酸的溶解度较小,故Na2B4O5(OH)4•8H2O晶体与盐酸反应得到硼酸,冷却结晶、过滤、洗涤、干燥得到硼酸(H3BO3)晶体。
(1)镁离子可以生成氢氧化镁沉淀,三氧化二铁不与氢氧化钠反应;
(2)反应物NaB(OH)4和过量CO2,生成物Na2B4O5(OH)4·8H2O和碳酸氢钠,写出化学方程式;
(3)取最后一次洗涤液,利用硝酸银检验;
(4) ①根据酚酞遇酸不变色,遇碱变红来判断;
②利用关系式法进行计算;
(5)M室氢氧根离子失电子,氢离子经过a膜进入产品室,a膜为阳离子交换膜;原料室中B(OH)4-通过b膜进入产品室遇M室进入的H+反应生成H3BO3,b膜为阴离子交换膜;原料室Na+经过c膜进入N室,c膜为阳离子交换膜,N室氢离子得电子生成氢气,氢氧根离子浓度增大。即M室生成氧气,消耗水,N室生成氢氧化钠和氢气,据此分析。
【详解】(1) 硼镁矿与氢氧化钠反应,镁离子生成氢氧化镁沉淀,Fe2O3不与氢氧化钠反应,因此沉淀的主要成分为Mg(OH)2、Fe2O3;
答案:Mg(OH)2、Fe2O3
(2) 反应物NaB(OH)4和过量CO2,生成物Na2B4O5(OH)4·8H2O和碳酸氢钠,化学方程式为4NaB(OH)4+2CO2+3H2O=Na2B4O5(OH)4▪8H2O↓+2NaHCO3;
答案:4NaB(OH)4+2CO2+3H2O=Na2B4O5(OH)4▪8H2O↓+2NaHCO3
(3)检验H3BO3晶体洗涤干净的操作是取最后一次洗涤液少许于试管中,滴加硝酸酸化的硝酸银溶液,若无明显现象,说明洗涤干净;
答案:取最后一次洗涤液少许于试管中,滴加硝酸酸化的硝酸银溶液,若无明显现象,说明洗涤干净
(4)①滴定终点的现象为溶液由无色变为浅红色,且半分钟内不褪色;
答案:溶液由无色变浅红色,且半分钟内不褪色
②H3BO3~NaOH
1mol 1mol
n(H3BO3)0.2000mol/L×22.00×10-3L
得n(H3BO3)=0.0044mol
m(H3BO3)= n(H3BO3)×M(H3BO3)=0.0044mol×62g/mol=0.2728g
纯度为×100%=90.9%
(5)M室氢氧根离子失电子生成氧气,氢离子经过a膜进入产品室,a膜为阳离子交换膜;原料室中B(OH)4-通过b膜进入产品室遇M室进入的H+反应生成H3BO3,b膜为阴离子交换膜;原料室Na+经过c膜进入N室,c膜为阳离子交换膜,N室氢离子得电子生成氢气,氢氧根离子浓度逐渐增大。
①由上面分析可知b膜为阴离子交换膜,因为H++ B(OH)4-=H3BO3+H2O,因此转移1mol电子生成1mol H3BO3;列关系式
1mole-~1/4O2(M室)~1mol H3BO3~1/2H2(N室)
理论上每生成1molH3BO3,两极室共生成(1/2+1/4)mol×22.4L/mol=16.8L气体(标准状况);
②由上面分析可知N室中,进口和出口NaOH溶液的浓度:a% 答案:阴离子 16.8 <
9.亚硝酸钠(NaNO2)是一种常用的食品添加剂,使用时需严格控制用量。实验室以2NO+Na2O2=2NaNO2为原理,利用下列装置制取NaNO2(夹持和加热仪器略)。
已知:①酸性KMnO4溶液可将NO及NO2-氧化为NO3-,MnO4-被还原为Mn2+。
②HNO2具有不稳定性:2HNO2=NO2↑+NO↑+H2O。
回答下列问题:
(1)按气流方向连接仪器接口______________(填接口字母)。
(2)实验过程中C装置内观察到的现象是___________________________。
(3)Na2O2充分反应后,测定NaNO2含量:称取反应后B中固体样品3.45g溶于蒸馏水,冷却后用0.50mol· L-1酸性KMnO4标准液滴定。重复三次,标准液平均用量为20.00mL。
①该测定实验需要用到下列仪器中的___________(填序号)。
a.锥形瓶 b.容量瓶 c.胶头滴管 d.酸式滴定管 e.碱式滴定管 f.玻璃棒
②假定其他物质不与KMnO4反应,则固体样品中NaNO2的纯度为____%。
③实验得到NaNO2的含量明显偏低,分析样品中含有的主要杂质为_____(填化学式)。为提高产品含量,对实验装置的改进是在B装置之前加装盛有_____(填药品名称)的______(填仪器名称)。
(4)设计一个实验方案证明酸性条件下NaNO2具有氧化性________________________。
(提供的试剂:0.10mol·L-1NaNO2溶液、KMnO4溶液、0.10mol·L-1KI溶液、淀粉溶液、稀硝酸、稀硫酸)
【答案】 (1). aedbc(或cb)f (2). 固体逐渐溶解,溶液变为蓝色,有无色气泡产生 (3). adf (4). 50% (5). Na2CO3、NaOH (6). 碱石灰(或氢氧化钠固体) (7). 干燥管(或U形管) (8). 取少量KI溶液和NaNO2溶液于试管,滴加几滴淀粉溶液不变色,然后滴加一定量稀硫酸,溶液变蓝,证明酸性条件下NaNO2具有氧化性(或取少量KI溶液和稀硫酸于试管,然后滴加几滴淀粉溶液不变色,滴加NaNO2溶液,溶液变为蓝色,证明酸性条件下NaNO2具有氧化性)
【解析】
【分析】
本题表面考查了2NO+Na2O2=2NaNO2,该反应是陌生反应,但实际主要以基础知识为主,例如NO、Na2O2,NO2-等性质,本题综合性强,难度偏大。
【详解】(1)A中浓硝酸与炭反应生成NO2,NO2通入C装置可产生NO,因而按气流方向连接仪器接口aed,注意长进短出,然后NO和B中Na2O2反应,最后D为除杂装置,因而后续连接顺序为bc(或cb)f,该处答案为aedbc(或cb)f;
(2)NO2与水反应可得稀硝酸和NO,稀硝酸(包含挥发的硝酸)与Cu反应得到硝酸铜和NO,NO为无色气体,因而C中现象为固体逐渐溶解,溶液变为蓝色,有无色气泡产生;
(3)①酸性KMnO4标准液有腐蚀性,因而选用酸式滴定管,锥形瓶盛放待测液,玻璃棒溶解和转移固体,因而选adf;
②高锰酸钾与亚硝酸钠的离子方程式为2MnO4-+5NO2-+6H+=2Mn2++5NO3-+3H2O,n(NO2-)=mol=0.025mol,m(NaNO2)=0.025mol×69g/mol=1.725g,则固体样品中NaNO2的纯度为×100%=50%;
③碳和浓硝酸反应得到CO2,同时C中会有水蒸气进入B中,CO2和水分别与Na2O2反应得到Na2CO3、NaOH,样品中含有的主要杂质为Na2CO3、NaOH,同时除去CO2和H2O,可使用碱石灰(或氢氧化钠固体),该药品可装在干燥管内或U形管中;
(4)要想证明酸性条件下NaNO2具有氧化性,需要选用合适的还原剂(如KI溶液)与之反应,并且能够观察到明显的反应现象(如淀粉遇碘变蓝),根据提供的试剂可选用0.10mol·L-1NaNO2溶液、0.10mol·L-1KI溶液、淀粉溶液、稀硫酸,注意用稀硫酸酸化,稀硝酸有强氧化性干扰实验。因而实验过程为取少量KI溶液和NaNO2溶液于试管,滴加几滴淀粉溶液不变色,然后滴加一定量稀硫酸,溶液变蓝,证明酸性条件下NaNO2具有氧化性(或取少量KI溶液和稀硫酸于试管,然后滴加几滴淀粉溶液不变色,滴加NaNO2溶液,溶液变为蓝色,证明酸性条件下NaNO2具有氧化性)。
10.CH4超干重整CO2技术可得到富含CO的化工原料。回答下列问题:
(1)CH4超干重整CO2催化转化如图所示:
①已知相关反应的能量变化如图所示:
过程Ⅰ的热化学方程式为________。
②关于上述过程Ⅱ的说法不正确的是________(填序号)。
a.实现了含碳物质与含氢物质的分离
b.可表示为CO2+H2=H2O(g)+CO
c.CO未参与反应
d.Fe3O4、CaO为催化剂,降低了反应的ΔH
③其他条件不变,在不同催化剂(Ⅰ、Ⅱ、Ⅲ)作用下,反应CH4(g)+CO2(g)=2CO(g)+2H2(g)进行相同时间后,CH4的转化率随反应温度的变化如图所示。a点所代表的状态________(填“是”或“不是”)平衡状态;b点CH4的转化率高于c点,原因是________。
(2)在一刚性密闭容器中,CH4和CO2的分压分别为20kPa、25kPa,加入Ni/α-Al2O3催化剂并加热至1123K使其发生反应CH4(g)+CO2(g)=2CO(g)+2H2(g)。
①研究表明CO的生成速率υ(CO)=1.3×10-2·p(CH4)·p(CO2)mol·g-1·s-1,某时刻测得p(CO)=20kPa,则p(CO2)=________kPa,υ(CO)=________mol·g-1·s-1。
②达到平衡后测得体系压强是起始时的1.8倍,则该反应的平衡常数的计算式为Kp=________(kPa)2。(用各物质的分压代替物质的量浓度计算)
(3)CH4超干重整CO2得到的CO经偶联反应可制得草酸(H2C2O4)。常温下,向某浓度的草酸溶液中加入一定浓度的NaOH溶液,所得溶液中,则此时溶液的pH=________。(已知常温下H2C2O4的Ka1=6×10-2,Ka2=6×10-5,lg6=0.8)
【答案】 (1). CH4(g)+CO2(g)=2CO(g)+2H2(g) ΔH=247.4kJ·mol-1 (2). cd (3). 不是 (4). b和c都未达平衡,b点温度高,反应速率快,相同时间内转化率高 (5). 15 (6). 1.95 (7). (8). 2.7
【解析】
分析】
由能量-反应进程曲线得热化学方程式,应用盖斯定律可得过程I的热化学方程式。过程II中进入循环的物质是最初反应物,出循环的物质是最终生成物,可得总反应方程式。恒温恒容时组分气体的分压与其物质的量成正比,故用分压代替物质的量进行计算。草酸溶液与NaOH溶液混合后,其两步电离平衡仍然存在,据电离常数表达式可求特定条件下溶液的pH。
【详解】(1)①据CH4超干重整CO2的催化转化图,过程I的化学反应为CH4(g)+CO2(g)=2CO(g)+2H2(g)。由能量-反应进程曲线得热化学方程式:
CH4(g)+H2O(g)=CO(g)+3H2(g) ΔH=+206.2kJ·mol-1 (i)
CO2(g)+4H2(g)=CH4(g)+2H2O(g) ΔH=-165kJ·mol-1 (ii)
(i)×2+(ii)得过程I的热化学方程式:CH4(g)+CO2(g)=2CO(g)+2H2(g) ΔH=247.4kJ·mol-1
②过程Ⅱ物质变化为:左上(CO、H2、CO2)+ 右下(惰性气体)→ 左下(H2O)+ 右上(CO、惰性气体),总反应为H2+CO2=H2O+CO。Fe3O4、CaO为总反应的催化剂,能降低反应的活化能,但不能改变反应的ΔH。故ab正确,cd错误。
③通常,催化剂能加快反应速率,缩短反应到达平衡的时间。但催化剂不能使平衡发生移动,即不能改变平衡转化率。若图中a点为化学平衡,则保持温度不变(800℃),将催化剂II换成I或III,CH4转化率应不变,故a点不是化学平衡。
同理,图中b、c两点都未达到化学平衡。据题意,b、c两点只有温度不同,b点温度较高,反应速率快,相同时间内CH4转化率高。
(2)①据气态方程PV=nRT,恒温恒容时某组分气体的分压与其物质的量成正比。则反应中分压为
1123K恒容时,CH4(g)+CO2(g)=2CO(g)+2H2(g)
起始分压/kPa: 20 25 0 0
改变分压/kPa: 10 10 20 20
某时分压/kPa: 10 15 20 20
即某时刻p(CO2)=15kPa,p(CH4)=10kPa。代入υ(CO)=1.3×10-2·p(CH4)·p(CO2)mol·g-1·s-1=1.95mol·g-1·s-1。
②设达到平衡时CH4的改变分压为x kPa,
1123K恒容时,CH4(g)+CO2(g)=2CO(g)+2H2(g)
起始分压/kPa: 20 25 0 0
改变分压/kPa: x x 2x 2x
平衡分压/kPa: 20-x 25-x 2x 2x
据题意,有=1.8,解得x=18。CH4(g)、CO2(g)、CO(g)、H2(g)的平衡分压依次是2 kPa、7 kPa、36 kPa、36 kPa,代入Kp==(kPa)2。
(3)常温下,草酸溶液与NaOH溶液混合,所得混合溶液中仍存在分步电离:
H2C2O4H++HC2O4- Ka1=
HC2O4-H++C2O42- Ka2=
当时,Ka1·Ka2=。==6×10-3.5 mol/L,pH=2.7。
【点睛】一定温度下,可逆反应建立平衡时,用平衡浓度求得浓度平衡常数Kc,用平衡分压求得压力平衡常数Kp,它们可通过气态方程进行换算。
11.含有N、P、Fe、Ti等元素的新型材料有着广泛的用途。
(1)基态Fe原子未成对电子数为______个;基态Ti原子的价电子排布图是_____________。
(2)意大利罗马大学的:FuNvio Cacace等人获得了极具理论研究意义的N4分子,其中氮原子的轨道杂化形式为__________________________。
(3)比较气态氢化物膦(PH3)和氨(NH3)的键角:PH3________NH3(填“大于”、“小于”或“等于”),主要原因为____________________________________________________________。
(4)半夹心结构催化剂M能催化乙烯、丙烯、苯乙烯的聚合,其结构如图所示。
①组成M的元素中,电负性最大的是___________(填名称)。
②M中含有_________(填标号)。
A π键 B σ键
C 离子键 D 配位键
(5)已知金刚石的晶胞沿其体对角线垂直在纸平面上的投影图如下图B所示,则金属铁晶胞沿其体对角线垂直在纸平面上的投影图应该是图__________(填标号)。
(6)某种磁性氮化铁的晶胞结构如图所示,其中距离铁原子最近的铁原子的个数为____________,氮化铁晶胞底边长为a cm,高为c cm,则这种磁性氮化铁的晶体密度为__________g·cm-3(用含a、c和NA的计算式表示)。
【答案】 (1). 4 (2). (3). sp3 (4). 小于 (5). 电负性N强于P,中心原子的电负性越大,成键电子对离中心原子越近,成键电子对之间距离越小,成键电子对之间的排斥力增大,键角变大 (6). 氧 (7). ABD (8). A (9). 12 (10).
【解析】
【详解】(1) Fe为26号元素,基态Fe的核外电子排布式为1s22s22p63s23p63d64s2,基态原子未成对电子数为4个;Ti为22号元素,基态Ti的核外电子排布式为1s22s22p63s23p63d24s2,所以基态Ti原子的价电子排布图是;答案:4;。
(2)N4分子的空间构型与P4类似,4个N原子形成正四面体构型,每个N原子形成3个N-N键,还含有1对孤电子对,杂化轨道数目为4,故N原子采取sp3杂化;答案:sp3。
(3) 因为电负性N强于P,中心原子的电负性越大,成键电子对离中心原子越近,成键电子对之间距离越小,成键电子对之间的排斥力增大,键角变大,所以PH3小于NH3。答案:小于;电负性N强于P,中心原子的电负性越大,成键电子对离中心原子越近,成键电子对之间距离越小,成键电子对之间的排斥力增大,键角变大。
(4) ①组成M的元素有Ti、C、H、O、Cl ,其中O的非金属性最强,非金属性越强电负性越大,所以电负性最大的是氧;答案:氧。
②M中有碳碳双键、碳碳单键、C—H键、C—O键等,单键为键、 双键中含1个键和1个π键;根据M的结构知Ti与O之间有配位键,没有离子键,故选ABD。
(5) )由金刚石的晶胞结构可知,金刚石的晶胞相当于一个大的体心立方堆积中套一个小的体心立方堆积,金属铁的晶胞为体心立方堆积,根据金刚石的晶胞沿其体对角线垂直在纸平面上的投影图知,金属铁的晶胞沿其体对角线垂直在纸面上的投影图为A。答案:A。
(6) 根据均摊法,在氮化铁晶胞中,含有N原子数为2,Fe原子数为2×1/2+12×1/6+3=6,所以氮化铁的化学式Fe3N,其中铁原子最近的铁原子的个数为12;若晶胞底边长为acm,高为ccm,则晶胞的体积是a2ccm3,所以这种磁性氮化铁的晶体密度为g÷a2ccm3=g/cm3;答案:12; 。
12.白头翁素具有显著的抗菌作用,其合成路线如图所示:
已知:
①RCH2BrRCH=CHR’
②2RCH=CHR’
(以上R、R’代表氢、烷基)
(1)白头翁素的分子式为____。
(2)试剂a为______,E→F的反应类型为________。
(3)F的结构简式为_________。
(4)C中含有的官能团名称为________。
(5) A→B反应的化学方程式为_________。
(6)F与足量氢气加成得到G,G有多种同分异构体,其中属于链状羧酸类有____种。
(7)以乙烯为起始原料,选用必要的无机试剂合成的路线为____(用结构简式表示有机物,用箭头表示转化关系,箭头上注明试剂和反应条件)。
【答案】 (1). C10H8O4 (2). 浓硫酸 (3). 消去反应 (4). (5). 羧基、羟基、碳碳双键 (6). +H2O (7). 8 (8). 第一种路线:
第二种路线:CH2=CH2CH2BrCH2BrCH2=CH-CH=CH2CH3CH=CHCH3
【解析】
【分析】
(1)~(6)A发生加成反应生成的B为HOOCCH(OH)CH2CH2Br,B和HCHO发生已知①的反应生成C:,C发生消去反应生成D:,醇发生消去反应需要在浓硫酸作催化剂、加热条件下进行,所以试剂a为浓硫酸;D与I2反应生成E,根据F的分子式和白头翁素的结构简式,F发生已知②的反应生成白头翁素,则F为,E发生消去反应生成F,卤代烃在NaOH醇溶液、加热条件下发生消去反应,则b为NaOH醇溶液。
(7)以乙烯为起始原料合成,可由CH3CH=CHCH3发生已知②的反应得到;CH3CH=CHCH3可由CH3CH2Br与CH3CHO发生已知①的反应获得,CH2=CH2与HBr发生加成反应生成CH3CH2Br,乙烯与水发生加成反应得乙醇,乙醇催化氧化可制得CH3CHO;CH3CH=CHCH3也可由CH2=CHCH=CH2和氢气发生1,4—加成反应得到,CH2=CHCH=CH2可由CH2BrCH2Br和HCHO发生已知①的反应得到,CH2BrCH2Br可由CH2=CH2和溴发生加成反应得到。
【详解】(1)根据结构简式确定白头翁素的分子式为C10H8O4;
(2)C→D为醇的消去反应,则试剂a为浓硫酸,E→F的反应类型为消去反应;
(3)F的结构简式为;
(4) C的结构简式为,C中含有的官能团名称为羧基、碳碳双键、羟基;
(5)A发生加成反应生成B,A→B反应的化学方程式为;
(6)F为,F与足量氢气加成得到G,G的分子式为C5H8O2,G的不饱和度是2,G有多种同分异构体,其中属于链状羧酸类,羧基的不饱和度是1,说明含有-COOH、碳碳双键;如果碳链结构为C=C-C-C,有4种;如果碳链结构为C-C=C-C,有2种;如果碳链结构为,有2种,所以符合条件的有8种;
(7)以乙烯为起始原料合成,可由CH3CH=CHCH3发生已知②的反应得到;CH3CH=CHCH3可由CH3CH2Br与CH3CHO发生已知①的反应获得,CH2=CH2与HBr发生加成反应生成CH3CH2Br,乙烯与水发生加成反应得乙醇,乙醇催化氧化可制得CH3CHO;CH3CH=CHCH3也可由CH2=CHCH=CH2和氢气发生1,4—加成反应得到,CH2=CHCH=CH2可由CH2BrCH2Br和HCHO发生已知①的反应得到,CH2BrCH2Br可由CH2=CH2和溴发生加成反应得到;其合成路线为,也可能是合成路线为:。
【点睛】本题考查有机物推断和合成,根据流程图,结合题干信息及反应条件、进行物质推断是关键,难点是同分异构体种类判断,利用不饱和度确定链状结构中存在的官能团,题目侧重考查学生的分析推断及知识综合运用、知识迁移能力。
相关资料
更多