终身会员
搜索
    上传资料 赚现金

    人教版九年级上册课件:22.1.1二次函数

    立即下载
    加入资料篮
    人教版九年级上册课件:22.1.1二次函数第1页
    人教版九年级上册课件:22.1.1二次函数第2页
    人教版九年级上册课件:22.1.1二次函数第3页
    人教版九年级上册课件:22.1.1二次函数第4页
    人教版九年级上册课件:22.1.1二次函数第5页
    人教版九年级上册课件:22.1.1二次函数第6页
    人教版九年级上册课件:22.1.1二次函数第7页
    人教版九年级上册课件:22.1.1二次函数第8页
    还剩21页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学人教版九年级上册22.1.1 二次函数课文配套ppt课件

    展开

    这是一份初中数学人教版九年级上册22.1.1 二次函数课文配套ppt课件,共29页。PPT课件主要包含了情境引入,视频引入,什么叫函数,y6x2,探究归纳,n-1,1+x,1+x2,想一想,二次函数的定义等内容,欢迎下载使用。
    1.理解掌握二次函数的概念和一般形式.(重点)2.会利用二次函数的概念解决问题.3.会列二次函数表达式解决实际问题.(难点)
    雨后天空的彩虹,公园里的喷泉,跳绳等都会形成一条曲线.这些曲线能否用函数关系式表示?
    思考:视频中得到的优美曲线可以用函数来表示吗?
    一般地,在一个变化的过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.
    3.一元二次方程的一般形式是什么?
    一般地,形如y=kx+b(k,b是常数,k≠0)的函数叫做一次函数.当b=0 时,一次函数y=kx就叫做正比例函数.
    2.什么是一次函数?正比例函数?
    ax2+bx+c=0 (a≠0)
    问题1 正方体六个面是全等的正方形,设正方体棱长为 x,表面积为 y,则 y 关于x 的关系式为 .
    此式表示了正方体表面积y与正方体棱长x之间的关系,对于x的每一个值,y都有唯一的一个对应值,即y是x的函数.
    问题2 n个球队参加比赛,每两个队之间进行一场比赛,比赛的场次数m与球队数n有什么关系?
    分析:每个球队n要与其他 个球队各比赛一场,甲队对乙队的比赛与乙队对甲队的比赛时同一场比赛,所以比赛的场次数 .
    此式表示了比赛的场次数m与球队数n之间的关系,对于n的每一个值,m都有唯一的一个对应值,即m是n的函数.
    问题3 某工厂一种产品现在的年产量是20件,计划今后两年增加产量.如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y将随计划所定的x的值而确定,y与x之间的关系怎样表示?
    分析:这种产品的原产量是20件, 一年后的产量是 件,再经过一年后的产量是 件,即两年后的产量y=________.
    y=20x2+40x+20;
    此式表示了两年后的产量y与计划增产的倍数x之间的关系,对于x的每一个值,y都有唯一的一个对应值,即y是x的函数.
    问题1-3中函数关系式有什么共同点?
    函数都是用自变量的二次整式表示的
    y=20x2+40x+20
    形如y=ax²+bx+c(a,b,c是常数,a≠ 0)的函数叫做二次函数.其中x是自变量,a,b,c分别是二次项系数、一次项系数和常数项.
    (1)等号左边是变量y,右边是关于自变量x的整式;(2)a,b,c为常数,且a≠ 0;(3)等式的右边最高次数为 2,可以没有一次项和常数项,但不能没有二次项.
    例1 下列函数中哪些是二次函数?为什么?(x是自变量)① y=ax2+bx+c ② s=3-2t² ③y=x2 ④ ⑤y=x²+x³+25 ⑥ y=(x+3)²-x²
    不一定是,缺少a≠0的条件.
    不是,x的最高次数是3.
    判断一个函数是不是二次函数,先看原函数和整理化简后的形式再作判断.除此之外,二次函数除有一般形式y=ax2+bx+c(a≠0)外,还有其特殊形式如y=ax2,y=ax2+bx, y=ax2+c等.
    想一想:二次函数的一般式y=ax2+bx+c(a≠0)与一元二次方程ax2+bx+c=0(a≠0)有什么联系和区别?
    联系:(1)等式一边都是ax2+bx+c且a ≠0;(2)方程ax2+bx+c=0可以看成是函数y= ax2+bx+c中y=0时得到的.
    区别:前者是函数.后者是方程.等式另一边前者是y,后者是0.
    例2 (1)m取什么值时,此函数是正比例函数?(2) m取什么值时,此函数是二次函数?
    第(2)问易忽略二次项系数a≠0这一限制条件,从而得出m=3或-3的错误答案,需要引起同学们的重视.
    1.已知: ,k取什么值时,y是x的二次函数?
    【解题小结】本题考查正比例函数和二次函数的概念,这类题需紧扣概念的特征进行解题.
    例3:某工厂生产的某种产品按质量分为10个档次,第1档次(最低档次)的产品一天能生产95件,每件利润6元.每提高一个档次,每件利润增加2元,但一天产量减少5件.(1)若生产第x档次的产品一天的总利润为y元(其中x为正整数,且1≤x≤10),求出y关于x的函数关系式;
    解:∵第一档次的产品一天能生产95件,每件利润6元,每提高一个档次,每件利润加2元,但一天产量减少5件,∴第x档次,提高了(x-1)档,利润增加了2(x-1)元.∴y=[6+2(x-1)][95-5(x-1)],即y=-10x2+180x+400(其中x是正整数,且1≤x≤10);
    (2)若生产第x档次的产品一天的总利润为1120元,求该产品的质量档次.
    解:由题意可得 -10x2+180x+400=1120, 整理得 x2-18x+72=0, 解得 x1=6,x2=12(舍去). 所以,该产品的质量档次为第6档.
    【方法总结】解决此类问题的关键是要吃透题意,确定变量,建立函数模型.
    思考:1.已知二次函数y=-10x2+180x+400 ,自变量x的取值范围是什么?
    2.在例3中,所得出y关于x的函数关系式y=-10x2+180x+400,其自变量x的取值范围与1中相同吗?
    【总结】二次函数自变量的取值范围一般是全体实数,但是在实际问题中,自变量的取值范围应使实际问题有意义.
    (1)求k的值.(2)当x=0.5时,y的值是多少?
    此类型题考查二次函数的概念,要抓住二次项系数不为0及自变量指数为2这两个关键条件,求出字母参数的值,得到函数解析式,再用代入法将x的值代入其中,求出y的值.
    2.函数 y=(m-n)x2+ mx+n 是二次函数的条件是( )A . m,n是常数,且m≠0 B . m,n是常数,且n≠0C. m,n是常数,且m≠n D . m,n为任何实数
    1.把y=(2-3x)(6+x)变成一般式,二次项为_____,一次项系数为______,常数项为 .
    4. 已知函数 y=3x2m-1-5 ① 当m=__时,y是关于x的一次函数; ② 当m=__时,y是关于x的反比例函数; ③ 当m=__时,y是关于x的二次函数 .
    (1)求a的值. (2) 求函数关系式.(3)当x=-2时,y的值是多少?
    6.写出下列各函数关系,并判断它们是什么类型的函数(1)写出正方体的表面积S(cm2)与正方体棱长a(cm)之间的函数关系;(2)写出圆的面积y(cm2)与它的周长x(cm)之间的函数关系;(3)菱形的两条对角线的和为26cm,求菱形的面积S(cm2)与一对角线长x(cm)之间的函数关系.
    7.某商店经销一种销售成本为每千克40元的商品,根据市场分析,若按每千克50元销售,一个月能售出500kg,销售单价每涨1元,月销售量 就减少10kg,针对这种商品的销售情况,请解答下列问题:(1)当销售单价为每千克55元时,计算月销售量和销售利润分别为多少?(2)设销售单价为每千克x元,月销售利润为y元,求y与x的函数关系式(不必写出自变量x的取值范围)
    8.矩形的周长为16cm,它的一边长为x(cm),面积为y(cm2).求(1)y与x之间的函数解析式及自变量x的取值范围;(2)当x=3时矩形的面积.
    解:(1)y=(8-x)x=-x2+8x (0<x<8);
    (2)当x=3时,y=-32+8×3=15 cm2 .
    y=ax2+bx+c(a ≠0,a,b,c是常数)
    右边是整式;自变量的指数是2;二次项系数a ≠0.
    y=ax2;y=ax2+bx;y=ax2+c(a ≠0,a,b,c是常数).

    相关课件

    人教版九年级上册第二十二章 二次函数22.1 二次函数的图象和性质22.1.1 二次函数教学ppt课件:

    这是一份人教版九年级上册第二十二章 二次函数22.1 二次函数的图象和性质22.1.1 二次函数教学ppt课件,共19页。PPT课件主要包含了唯一确定,自变量,二次函数,变量之间的关系,一次函数,1+x,二次项,一次项,常数项,二次项系数等内容,欢迎下载使用。

    初中数学人教版九年级上册第二十二章 二次函数22.1 二次函数的图象和性质22.1.1 二次函数说课ppt课件:

    这是一份初中数学人教版九年级上册第二十二章 二次函数22.1 二次函数的图象和性质22.1.1 二次函数说课ppt课件,共22页。PPT课件主要包含了什么是函数,探究归纳,y6x2,n−1,1+x2,想一想,二次函数的定义,温馨提示,归纳总结,y6x+9等内容,欢迎下载使用。

    初中数学人教版九年级上册22.1.1 二次函数获奖ppt课件:

    这是一份初中数学人教版九年级上册22.1.1 二次函数获奖ppt课件,文件包含人教版数学九年级上册2211《二次函数》课件pptx、人教版数学九年级上册2211《二次函数》教案docx、人教版数学九年级上册2211《二次函数》课时练docx等3份课件配套教学资源,其中PPT共26页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map