![【数学】山东省青岛市胶州市2019-2020学年高二下学期期中学业水平检测试题01](http://img-preview.51jiaoxi.com/3/3/5666176/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【数学】山东省青岛市胶州市2019-2020学年高二下学期期中学业水平检测试题02](http://img-preview.51jiaoxi.com/3/3/5666176/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【数学】山东省青岛市胶州市2019-2020学年高二下学期期中学业水平检测试题03](http://img-preview.51jiaoxi.com/3/3/5666176/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
【数学】山东省青岛市胶州市2019-2020学年高二下学期期中学业水平检测试题
展开山东省青岛市胶州市2019-2020学年
高二下学期期中学业水平检测试题
本试卷6页,22小题,满分150分.考试用时120分钟.
注意事项:
1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上,并将条形码粘贴在答题卡指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。
3.考试结束后,请将答题卡上交。
一、单项选择题:本大题共8小题,每小题5分,共40分。在每小题给出的四个选项中,
只有一项是符合题目要求的。
1.某物体的运动方程为,其中位移的单位是米,时间的单位是秒,那么该物体在秒末的瞬时速度大小是( )
A.米/秒 B.米/秒 C.米/秒 D.米/秒
2.命题“函数是偶函数”的否定可表示为( )
A. B.
C. D.
3.在下列区间上函数单调递减的是( )
A. B. C. D.
4.若复数,为虚数单位,则“”是“为纯虚数”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
5.已知函数的图象如图所示,则可以为( )
A. B.
C. D.
6.分别独立的扔一枚骰子和硬币,并记下骰子向上的点数和硬币朝上的面,则结果中含有“点或正面向上”的概率为( )
A. B. C. D.
7.由于受到网络电商的冲击,某品牌的洗衣机在线下的销售受到影响,承受了一定的经济
损失,现将地区家实体店该品牌洗衣机的月经济损失统计如图所示.估算月经济损
失的平均数为,中位数为,则( )
A. B. C. D.
8.在直角坐标系中,曲线与圆的公共点个数为( )
A.个 B.个 C.个 D.个
二、多项选择题:本大题共4小题,每小题5分,共20分。在每小题给出的四个选项中,有多项符合题目要求。全部选对的得5分,部分选对的得3分,有选错的得0分。
9.随机变量服从正态分布,则下述正确的是( )
A. B.
C. D.
10.若复数满足(其中是虚数单位),复数的共轭复数为,则( )
A. B.的实部是
C.的虚部是 D.复数在复平面内对应的点在第一象限
11.某市坚持农业与旅游融合发展,着力做好旅游各要素,完善旅游业态,提升旅游接待能力。为了给游客提供更好的服务,旅游部门需要了解游客人数的变化规律,收集并整理了年月至年月期间月接待游客量(单位:万人)的数据,绘制了如图所示的折线图.
根据该折线图,下列结论正确的是( )
A.月接待游客量逐月增加
B.年接待游客量逐年增加
C.各年的月接待游客量高峰期大致在7,8月
D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳
12.关于的方程在上有个解.则实数可以等于( )
A. B. C. D.
三、填空题:本大题共4个小题,每小题5分,共20分。
13.已知(其中是虚数单位,),则 .
14.若“,”是假命题,则实数的取值范围是 .
15.已知是的导函数(),,则 .
16.若函数在区间上不是单调函数,则实数的取值范围是 .
四、解答题:共70分。解答应写出文字说明,证明过程或演算步骤。
17.(10分)
如图,已知长方形的周长为,其中点分别为的中点,将平面沿直线向上折起使得平面平面,连接,得到三棱柱.设,记三棱柱体积为.
(1)求函数的解析式;
(2)求函数的最大值.
18.(12分)
已知函数恒过定点.
(1)当时,求在点处的切线方程;
(2)当时,求在上的最小值.
19.(12分)
已知函数,.
(1)当时,证明:在上单调递增;
(2)当时,讨论的极值点.
20.(12分)
数学是研究数量、结构、变化、空间以及信息等概念的一门科学.在人类历史发展和社会生活中,数学发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具.
(1)为调查大学生喜欢数学命题是否与性别有关,随机选取名大学生进行问卷调查,当被调查者问卷评分不低于分则认为其喜欢数学命题,当评分低于分则认为其不喜欢数学命题,问卷评分的茎叶图如下:
依据上述数据制成如下列联表:
| 喜欢数学命题人数 | 不喜欢数学命题人数 | 总计 |
女生 | |||
男生 | |||
总计 |
请问是否有的把握认为大学生是否喜欢数学命题与性别有关?
参考公式及数据:.
(2)在某次命题大赛中,同学要进行轮命题,其在每轮命题成功的概率均为
,各轮命题相互独立,若该同学在轮命题中恰有次成功的概率为,记该同学在轮命题中的成功次数为,求.
21.(12分)
近期,某超市针对一款饮料推出刷脸支付活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用刷脸支付.该超市统计了活动刚推出一周内每一天使用刷脸支付的人次,用表示活动推出的天数,表示每天使用刷脸支付的人次,统计数据如下表所示:
(1)在推广期内, 与(均为大于零的常数)哪一个适宜作为刷脸支付的人次关于活动推出天数的回归方程类型?(给出判断即可,不必说明理由);
(2)根据(1)的判断结果及表中的数据,求关于的回归方程,并预测活动推出第天使用刷脸支付的人次;
(3)已知一瓶该饮料的售价为元,顾客的支付方式有三种:现金支付、扫码支付和刷脸支付,其中有使用现金支付,使用现金支付的顾客无优惠;有使用扫码支付,使用扫码支付享受折优惠;有使用刷脸支付,根据统计结果得知,使用刷脸支付的顾客,享受折优惠的概率为,享受折优惠的概率为,享受折优惠的概率为.根据所给数据估计购买一瓶该饮料的平均花费.
参考数据: 其中,
参考公式: 对于一组数据,其回归直线的斜率和截距的最小二乘估计公式分别为: .
22.(12分)
已知函数,.
(1)若,证明:;
(2)若,有且只有个零点,求实数的取值范围;
(3)若,,,求正整数的最小值.
参考答案
一、单项选择题:本大题共8小题,每小题5分,共40分。
1-8: BBDA ACCA
二、多项选择题:本大题共4小题,每小题5分,共20分。
9.AC; 10.ABD; 11.BCD; 12.CD.
三、填空题:本大题共4个小题,每小题5分,共20分。
13.; 14.; 15.; 16..
四、解答题:共70分。解答应写出文字说明,证明过程或演算步骤。
17.(10分)
解:(1)由题知:····················································2分
因为,长方形的周长为,
所以,
所以,·····························································5分
(2)由(1)知:,···················································6分
所以令,解得··························································7分
当在单调递增;······················································8分
当在单调递减;······················································9分
所以······························································10分
18.(12分)
解:(1)由题知:所以定点·············································2分
若,,所以··························································4分
所以在点处的切线方程:,即············································5分
(2)若,,所以······················································6分
令,解得······························································7分
当在单调递增························································8分
当在单调递减························································9分
又因为,···························································11分
所以的最小值为······················································12分
19.(12分)
解:(1)由题知:,所以···············································2分
因为,所以··························································3分
又因为·····························································4分
所以
所以在上单调递增·····················································5分
(2)由题知:·······················································6分
所以·······························································7分
若,则在上单调递增,无极值点··········································8分
若,由,解得························································9分
当时,,在上单调递减················································10分
当时,,在上单调递增················································11分
所以的极小值点为····················································12分
综上,当时,无极值点;当时,有一个极小值点,无极大值点
20.(12分)
解:(1)由题知:····················································4分
则·································································5分
所以没有的把握认为大学生是否喜欢数学命题与性别有关·······················6分
(2)由题知:·······················································8分
依据二项分布知:,所以··················································9分
令
··································································10分
当在单调递减;
当在单调递增;
因此,所以·························································11分
所以······························································12分
21.(12分)
解:(1)根据散点图判断,
适宜作为扫码支付的人数关于活动推出天数的回归方程类型·····················2分
(2)因为,两边同时取常用对数得:,
设所以·····························································3分
因为
所以·······························································4分
把样本中心点代入,得: ,
所以,
所以关于的回归方程式:···············································5分
把代入上式,,
所以活动推出第天使用刷脸支付的人次为···································6分
(3)记购买一瓶该饮料的花费为(元),则的取值可能为:
···································································7分
···································································8分
···································································9分
··································································10分
分布列为:
因为
所以估计购买一瓶该饮料的平均花费为(元)·······························12分
22.(12分)
解:(1)由题知,,··················································1分
所以,当时,,在上单调递增;
当时,,在上单调递减;·············································2分
所以·······························································3分
(2)因为,
当时,,在上单调递增,不可能有个零点···································4分
当时,令,解得,
所以,当时,,在上单调递增;
当时,,在上单调递减;
所以·······························································6分
若只有个零点,则,解得:··············································7分
由(1)知:,所以,令,
解得:或
所以,存在,满足;
存在,满足;
所以在和上个恰有个零点,符合题意
综上,所求实数的取值范围为············································8分
(3)令,
所以,
当时,因为,所以所以在上是递增函数,
又因为,
所以关于的不等式不能恒成立············································9分
当时,.
令,得,所以当时,,当时,.
因此函数在上是增函数,在是减函数,
所以······························································10分
令,因为,
又因为在上是减函数,所以当时,········································11分
所以整数的最小值为.················································12分