






所属成套资源:高中数学人教B版新教材必修第一册同步课件及导学案(全册)
数学必修 第一册3.1.3 函数的奇偶性优质习题课件ppt
展开
这是一份数学必修 第一册3.1.3 函数的奇偶性优质习题课件ppt,共14页。PPT课件主要包含了栏目索引,课时作业二十一等内容,欢迎下载使用。
若f(x)是定义在R上的奇函数,当x<0时,f(x)=x(1-x),求函数f(x)的解析式.
探究一 用奇偶性求解析式
[变式探究] 若将题设中的“f(x)是奇函数”改为“f(x)是偶函数,f(0)=0”,其他条件不变,则f(x)的解析式又是什么?
[方法总结]根据函数的奇偶性求解析式的一般步骤(1)“求谁设谁”,即在哪个区间求解析式,x就设在哪个区间内.(2)转化代入已知区间的解析式.(3)利用函数f(x)的奇偶性写出-f(-x)或f(-x),从而解出f(x).注意:若函数f(x)的定义域内含0且为奇函数时,则必有f(0)=0,但若为偶函数,则未必有f(0)=0.
探究二 函数奇偶性与单调性的综合
[方法总结]比较大小的策略看自变量是否在同一单调区间上(1)在同一单调区间上,直接利用函数的单调性比较大小;(2)不在同一单调区间上,需利用函数的奇偶性把自变量转化到同一单调区间上,然后利用单调性比较大小.
[跟踪训练1] 设偶函数f(x)的定义域为R,当x∈[0,+∞)时,f(x)是增函数,则f(-2),f(π),f(-3)的大小关系是( )A.f(π)>f(-3)>f(-2) B.f(π)>f(-2)>f(-3)C.f(π)<f(-3)<f(-2) D.f(π)<f(-2)<f(-3)答案 A 解析 由偶函数与单调性的关系知,若x∈[0,+∞)时,f(x)是增函数,则x∈(-∞,0)时,f(x)是减函数,故其图像的几何特征是自变量的绝对值越小,则其函数值越小,因为|-2|<|-3|<π,所以f(π)>f(-3)>f(-2).
[方法总结]利用单调性和奇偶性解不等式的方法(1)充分利用已知的条件,结合函数的奇偶性,把已知不等式转化为f(x1)>f(x2)或f(x1)<f(x2)的形式,再利用单调性脱掉“f”求解.(2)在对称区间上根据奇函数的单调性一致,偶函数的单调性相反,列出不等式或不等式组,求解即可,同时要注意函数自身定义域对参数的影响.
[跟踪训练2] 设定义在[-2,2]上的偶函数g(x),当x≥0时,g(x)单调递减,若g(1-m)
相关课件
这是一份高中人教B版 (2019)3.1.3 函数的奇偶性课文配套ppt课件
这是一份高中数学人教B版 (2019)必修 第一册3.1.3 函数的奇偶性课文ppt课件,共43页。PPT课件主要包含了新知初探•自主学习,-x∈D,答案ACD,答案C,答案B,课堂探究•素养提升,答案A,答案D等内容,欢迎下载使用。
这是一份高中数学人教B版 (2019)必修 第一册第三章 函数3.1 函数的概念与性质3.1.3 函数的奇偶性优秀ppt课件,共32页。PPT课件主要包含了学习目标,新知学习,即时巩固,函数的奇偶性的应用,题型训练,方法感悟等内容,欢迎下载使用。