2021高考数学大一轮复习考点规范练1集合的概念与运算理新人教A版
展开考点规范练1 集合的概念与运算
考点规范练A册第2页
基础巩固
1.下列集合中表示同一集合的是( )
A.M={(3,2)},N={(2,3)}
B.M={2,3},N={3,2}
C.M={(x,y)|x+y=1},N={y|x+y=1}
D.M={2,3},N={(2,3)}
答案:B
解析:选项A中的集合M,N都表示点集,又因为集合M,N中的点不同,所以集合M与N不是同一个集合;
选项C中的集合M,N的元素类型不同,故不是同一个集合;
选项D中的集合M是数集,而集合N是点集,故不是同一个集合;
由集合元素的无序性,可知选项B中的M,N表示同一个集合.
2.(2019河北石家庄一中模拟七)若集合B={x|x≥0},且A∩B=A,则集合A可能是( )
A.{1,2} B.{x|x≤1} C.{-1,0,1} D.R
答案:A
解析:因为A∩B=A,所以A⊆B.故选A.
3.(2019河北邯郸教学质量检测)已知集合A={(x,y)|x2=4y},B={(x,y)|y=x},则A∩B的真子集的个数为( )
A.1 B.3 C.5 D.7
答案:B
解析:集合A表示抛物线x2=4y上的点组成的集合,集合B表示直线y=x上的点组成的集合,A∩B表示抛物线与直线的交点组成的集合,解x2=4y与y=x构成的方程组可得抛物线与直线的交点为(0,0),(4,4),即A∩B中有两个元素,所以A∩B的真子集的个数为22-1=3.
4.(2019全国Ⅱ,理1)设集合A={x|x2-5x+6>0},B={x|x-1<0},则A∩B=( )
A.(-∞,1) B.(-2,1) C.(-3,-1) D.(3,+∞)
答案:A
解析:由题意,得A={x|x<2,或x>3},B={x|x<1},所以A∩B={x|x<1},故选A.
5.设集合P={3,log2a},Q={a,b},若P∩Q={0},则P∪Q=( )
A.{3,0} B.{3,0,1} C.{3,0,2} D.{3,0,1,2}
答案:B
解析:∵P∩Q={0},∴log2a=0,∴a=1,从而b=0,故P∪Q={3,0,1},选B.
6.已知集合A={x||x|<2},B={-1,0,1,2,3},则A∩B=( )
A.{0,1} B.{0,1,2}
C.{-1,0,1} D.{-1,0,1,2}
答案:C
解析:由|x|<2,可知-2<x<2,
即A={x|-2<x<2},
故A∩B={-1,0,1},选C.
7.已知全集U=R,A={x|x(x+3)<0},B={x|x<-1},则图中阴影部分表示的集合为( )
A.{x|x>0} B.{x|-3<x<0}
C.{x|-3<x<-1} D.{x|x<-1}
答案:C
解析:题图中阴影部分表示的集合是A∩B,而A={x|-3<x<0},故A∩B={x|-3<x<-1}.
8.已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x-y∈A},则B中所含元素的个数为( )
A.3 B.6 C.8 D.10
答案:D
解析:由x∈A,y∈A,x-y∈A,得(x,y)可取(2,1),(3,1),(4,1),(5,1),(3,2),(4,2),(5,2),(4,3),(5,3),(5,4),故集合B中所含元素的个数为10.
9.(2019四川攀枝花二模)已知集合A={-1,2},B={x|ax-2=0}.若B⊆A,则实数a的值组成的集合为( )
A.{-2} B.{1} C.{-2,1} D.{-2,1,0}
答案:D
解析:因为B⊆A,所以B=⌀或B={-1}或B={2}.若B=⌀,则a=0;若B={-1},则a=-2;若B={2},则a=1.所以实数a的值组成的集合为{-2,1,0}.
10.已知集合A={1,2},B={a,a2+3}.若A∩B={1},则实数a的值为 .
答案:1
解析:由已知得1∈B,2∉B,显然a2+3≥3,所以a=1,此时a2+3=4,满足题意,故答案为1.
11.已知集合A={x|0<log4x<1},B={x|x≤2},则A∩B= .
答案:(1,2]
解析:∵0<log4x<1,∴log41<log4x<log44,即1<x<4,
∴A={x|1<x<4}.
又B={x|x≤2},∴A∩B={x|1<x≤2}.
12.已知集合M={1,2,3,4},则集合P={x|x∈M,且2x∉M}的子集的个数为 .
答案:4
解析:由题意,得P={3,4},故集合P的子集有22=4个.
能力提升
13.(2019河北武邑中学高三一模)已知集合A,B,C满足A=,B={y|y=2x,x∈C},若A∩B=A∪B,则集合C=( )
A.{x|0<x<1} B.{x|x>0}
C.{x|x<0} D.{x|x>1}
答案:C
解析:A=={x|0<x<1}.因为A∩B=A∪B,所以B=A,所以0<2x<1,所以x<0,所以C={x|x<0}.
14.若集合A={x|x2+3x-4<0},B={x|-2<x<1},且M=A∩B,则有( )
A.∁RB⊆A B.B⊆A C.2∈M D.1∈M
答案:B
解析:由题意得A={x|-4<x<1},B={x|-2<x<1},
则M=A∩B={x|-2<x<1},故B⊆A.
15.若集合M={x|x2-x<0},N={y|y=ax(a>0,a≠1)},R表示实数集,则下列选项错误的是( )
A.M∩(∁RN)=⌀ B.M∪N=R
C.(∁RM)∪N=R D.M∩N=M
答案:B
解析:∵集合M={x|x2-x<0}={x|0<x<1},
N={y|y=ax(a>0,a≠1)}={y|y>0},
∴M∩(∁RN)={x|0<x<1}∩{y|y≤0}=⌀,故A正确;
M∪N=(0,+∞),故B错误;
(∁RM)∪N={x|x≤0或x≥1}∪{y|y>0}=R,故C正确;
M∩N={x|0<x<1}∩{y|y>0}={x|0<x<1}=M,故D正确.
故选B.
16.已知集合A={x|4≤2x≤16},B=[a,b],若A⊆B,则实数a-b的取值范围是 .
答案:(-∞,-2]
解析:集合A={x|4≤2x≤16}={x|22≤2x≤24}={x|2≤x≤4}=[2,4].
因为A⊆B,所以a≤2,b≥4.
所以a-b≤2-4=-2,即实数a-b的取值范围是(-∞,-2].
17.已知集合A={x|-2≤x≤7},B={x|m+1<x<2m-1},若B⊆A,则实数m的取值范围是 .
答案:(-∞,4]
解析:当B=⌀时,有m+1≥2m-1,可得m≤2.
当B≠⌀时,若B⊆A,如图所示,
则解得2<m≤4.
综上,m的取值范围为(-∞,4].
高考预测
18.已知集合A={x|x2-4x+3≥0},B={x∈N|-1≤x≤5},则A∩B=( )
A.{3,4,5} B.{0,1,4,5}
C.{1,3,4,5} D.{0,1,3,4,5}
答案:D
解析:由题意得A={x|x≤1或x≥3},B={0,1,2,3,4,5},
所以A∩B={0,1,3,4,5},故选D.