还剩26页未读,
继续阅读
成套系列资料,整套一键下载
- 2020年江苏省南通市中考数学试卷 解析版 试卷 14 次下载
- 2020年江苏省无锡市中考数学试卷 含解析 试卷 12 次下载
- 2020年江苏省苏州市中考数学试卷 试卷 21 次下载
- 2020年江苏省南京市中考数学试卷 试卷 21 次下载
- 2020年江苏省淮安市中考数学试题 试卷 12 次下载
2020年江苏省镇江市中考数学试卷 解析版
展开
2020年江苏省镇江市中考数学试卷
一、选择题(本大题共6小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.(3分)下列计算正确的是( )
A.a3+a3=a6 B.(a3)2=a6 C.a6÷a2=a3 D.(ab)3=ab3
2.(3分)如图,将棱长为6的正方体截去一个棱长为3的正方体后,得到一个新的几何体,这个几何体的主视图是( )
A. B. C. D.
3.(3分)一次函数y=kx+3(k≠0)的函数值y随x的增大而增大,它的图象不经过的象限是( )
A.第一 B.第二 C.第三 D.第四
4.(3分)如图,AB是半圆的直径,C、D是半圆上的两点,∠ADC=106°,则∠CAB等于( )
A.10° B.14° C.16° D.26°
5.(3分)点P(m,n)在以y轴为对称轴的二次函数y=x2+ax+4的图象上.则m﹣n的最大值等于( )
A. B.4 C.﹣ D.﹣
6.(3分)如图①,AB=5,射线AM∥BN,点C在射线BN上,将△ABC沿AC所在直线翻折,点B的对应点D落在射线BN上,点P,Q分别在射线AM、BN上,PQ∥AB.设AP=x,QD=y.若y关于x的函数图象(如图②)经过点E(9,2),则cosB的值等于( )
A. B. C. D.
二、填空题(本大题共12小题,每小题2分,共24分)
7.(2分)的倒数等于 .
8.(2分)使有意义的x的取值范围是 .
9.(2分)分解因式:9x2﹣1= .
10.(2分)2020年我国将完成脱贫攻坚目标任务.从2012年底到2019年底,我国贫困人口减少了93480000人,用科学记数法把93480000表示为 .
11.(2分)一元二次方程x2﹣2x=0的两根分别为 .
12.(2分)一只不透明的袋子中装有5个红球和1个黄球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,摸出红球的概率等于 .
13.(2分)圆锥底面圆半径为5,母线长为6,则圆锥侧面积等于 .
14.(2分)点O是正五边形ABCDE的中心,分别以各边为直径向正五边形的外部作半圆,组成了一幅美丽的图案(如图).这个图案绕点O至少旋转 °后能与原来的图案互相重合.
15.(2分)根据数值转换机的示意图,输出的值为 .
16.(2分)如图,点P是正方形ABCD内位于对角线AC下方的一点,∠1=∠2,则∠BPC的度数为 °.
17.(2分)在从小到大排列的五个数x,3,6,8,12中再加入一个数,若这六个数的中位数、平均数与原来五个数的中位数、平均数分别相等,则x的值为 .
18.(2分)如图,在△ABC中,BC=3,将△ABC平移5个单位长度得到△A1B1C1,点P、Q分别是AB、A1C1的中点,PQ的最小值等于 .
三、解答题(本大题共10小题,共78分.解答时应写出必要的计算过程、推演步骤或文字说明)
19.(8分)(1)计算:4sin60°﹣+(﹣1)0;
(2)化简(x+1)÷(1+).
20.(10分)(1)解方程:=+1;
(2)解不等式组:
21.(6分)如图,AC是四边形ABCD的对角线,∠1=∠B,点E、F分别在AB、BC上,BE=CD,BF=CA,连接EF.
(1)求证:∠D=∠2;
(2)若EF∥AC,∠D=78°,求∠BAC的度数.
22.(6分)教育部发布的义务教育质量监测结果报告显示,我国八年级学生平均每天的睡眠时间达9小时及以上的比例为19.4%.某校数学社团成员采用简单随机抽样的方法,抽取了本校八年级50名学生,对他们一周内平均每天的睡眠时间t(单位:小时)进行了调查,将数据整理后绘制成下表:
平均每天的睡眠时间分组
5≤t<6
6≤t<7
7≤t<8
8≤t<9
9小时及以上
频数
1
5
m
24
n
该样本中学生平均每天的睡眠时间达9小时及以上的比例高于全国的这项数据,达到了22%.
(1)求表格中n的值;
(2)该校八年级共400名学生,估计其中平均每天的睡眠时间在7≤t<8这个范围内的人数是多少.
23.(6分)智慧的中国古代先民发明了抽象的符号来表达丰富的含义.例如,符号“”有刚毅的含义,符号“”有愉快的含义.符号中的“”表示“阴”,“”表示“阳”,类似这样自上而下排成的三行符号还有其他的含义.所有这些三行符号中,每一行只有一个阴或一个阳,且出现阴、阳的可能性相同.
(1)所有这些三行符号共有 种;
(2)若随机画一个这样的三行符号,求“画出含有一个阴和两个阳的三行符号”的概率.
24.(6分)如图,点E与树AB的根部点A、建筑物CD的底部点C在一条直线上,AC=10m.小明站在点E处观测树顶B的仰角为30°,他从点E出发沿EC方向前进6m到点G时,观测树顶B的仰角为45°,此时恰好看不到建筑物CD的顶部D(H、B、D三点在一条直线上).已知小明的眼睛离地面1.6m,求建筑物CD的高度(结果精确到0.1m).(参考数据:≈1.41,≈1.73.)
25.(6分)如图,正比例函数y=kx(k≠0)的图象与反比例函数y=﹣的图象交于点A(n,2)和点B.
(1)n= ,k= ;
(2)点C在y轴正半轴上.∠ACB=90°,求点C的坐标;
(3)点P(m,0)在x轴上,∠APB为锐角,直接写出m的取值范围.
26.(8分)如图,▱ABCD中,∠ABC的平分线BO交边AD于点O,OD=4,以点O为圆心,OD长为半径作⊙O,分别交边DA、DC于点M、N.点E在边BC上,OE交⊙O于点G,G为的中点.
(1)求证:四边形ABEO为菱形;
(2)已知cos∠ABC=,连接AE,当AE与⊙O相切时,求AB的长.
27.(11分)【算一算】
如图①,点A、B、C在数轴上,B为AC的中点,点A表示﹣3,点B表示1,则点C表示的数为 ,AC长等于 ;
【找一找】
如图②,点M、N、P、Q中的一点是数轴的原点,点A、B分别表示实数﹣1、+1,Q是AB的中点,则点 是这个数轴的原点;
【画一画】
如图③,点A、B分别表示实数c﹣n、c+n,在这个数轴上作出表示实数n的点E(要求:尺规作图,不写作法,保留作图痕迹);
【用一用】
学校设置了若干个测温通道,学生进校都应测量体温,已知每个测温通道每分钟可检测a个学生.凌老师提出了这样的问题:假设现在校门口有m个学生,每分钟又有b个学生到达校门口.如果开放3个通道,那么用4分钟可使校门口的学生全部进校;如果开放4个通道,那么用2分钟可使校门口的学生全部进校.在这些条件下,a、m、b会有怎样的数量关系呢?
爱思考的小华想到了数轴,如图④,他将4分钟内需要进校的人数m+4b记作+(m+4b),用点A表示;将2分钟内由4个开放通道检测后进校的人数,即校门口减少的人数8a记作﹣8a,用点B表示.
①用圆规在小华画的数轴上分别画出表示+(m+2b)、﹣12a的点F、G,并写出+(m+2b)的实际意义;
②写出a、m的数量关系: .
28.(11分)如图①,直线l经过点(4,0)且平行于y轴,二次函数y=ax2﹣2ax+c(a、c是常数,a<0)的图象经过点M(﹣1,1),交直线l于点N,图象的顶点为D,它的对称轴与x轴交于点C,直线DM、DN分别与x轴相交于A、B两点.
(1)当a=﹣1时,求点N的坐标及的值;
(2)随着a的变化,的值是否发生变化?请说明理由;
(3)如图②,E是x轴上位于点B右侧的点,BC=2BE,DE交抛物线于点F.若FB=FE,求此时的二次函数表达式.
2020年江苏省镇江市中考数学试卷
参考答案与试题解析
一、选择题(本大题共6小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.(3分)下列计算正确的是( )
A.a3+a3=a6 B.(a3)2=a6 C.a6÷a2=a3 D.(ab)3=ab3
【分析】根据同底数幂的乘除法、幂的乘方的计算法则进行计算即可.
【解答】解:a3+a3=2a3,因此选项A不正确;
(a3)2=a3×2=a6,因此选项B正确;
a6÷a2=a6﹣2=m4,因此选项C不正确;
(ab)3=a3b3,因此选项D不正确;
故选:B.
2.(3分)如图,将棱长为6的正方体截去一个棱长为3的正方体后,得到一个新的几何体,这个几何体的主视图是( )
A. B. C. D.
【分析】根据从正面看得到的视图是主视图,可得答案.
【解答】解:从正面看是一个正方形,正方形的右上角是一个小正方形,
故选:A.
3.(3分)一次函数y=kx+3(k≠0)的函数值y随x的增大而增大,它的图象不经过的象限是( )
A.第一 B.第二 C.第三 D.第四
【分析】根据一次函数y=kx+3(k≠0)的函数值y随x的增大而增大,可以得到k>0,与y轴的交点为(0,3),然后根据一次函数的性质,即可得到该函数图象经过哪几个象限,不经过哪个象限,从而可以解答本题.
【解答】解:∵一次函数y=kx+3(k≠0)的函数值y随x的增大而增大,
∴k>0,该函数过点(0,3),
∴该函数的图象经过第一、二、三象限,不经过第四象限,
故选:D.
4.(3分)如图,AB是半圆的直径,C、D是半圆上的两点,∠ADC=106°,则∠CAB等于( )
A.10° B.14° C.16° D.26°
【分析】连接BD,如图,根据圆周角定理得到∠ADB=90°,则可计算出∠BDC=16°,然后根据圆周角定理得到∠CAB的度数.
【解答】解:连接BD,如图,
∵AB是半圆的直径,
∴∠ADB=90°,
∴∠BDC=∠ADC﹣∠ADB=106°﹣90°=16°,
∴∠CAB=∠BDC=16°.
故选:C.
5.(3分)点P(m,n)在以y轴为对称轴的二次函数y=x2+ax+4的图象上.则m﹣n的最大值等于( )
A. B.4 C.﹣ D.﹣
【分析】根据题意,可以得到a的值,m和n的关系,然后将m、n作差,利用二次函数的性质,即可得到m﹣n的最大值,本题得以解决.
【解答】解:∵点P(m,n)在以y轴为对称轴的二次函数y=x2+ax+4的图象上,
∴a=0,
∴n=m2+4,
∴m﹣n=m﹣(m2+4)=﹣m2+m﹣4=﹣(m﹣)2﹣,
∴当m=时,m﹣n取得最大值,此时m﹣n=﹣,
故选:C.
6.(3分)如图①,AB=5,射线AM∥BN,点C在射线BN上,将△ABC沿AC所在直线翻折,点B的对应点D落在射线BN上,点P,Q分别在射线AM、BN上,PQ∥AB.设AP=x,QD=y.若y关于x的函数图象(如图②)经过点E(9,2),则cosB的值等于( )
A. B. C. D.
【分析】由题意可得四边形ABQP是平行四边形,可得AP=BQ=x,由图象②可得当x=9时,y=2,此时点Q在点D下方,且BQ=x=9时,y=2,如图①所示,可求BD=7,由折叠的性质可求BC的长,由锐角三角函数可求解.
【解答】解:∵AM∥BN,PQ∥AB,
∴四边形ABQP是平行四边形,
∴AP=BQ=x,
由图②可得当x=9时,y=2,
此时点Q在点D下方,且BQ=x=9时,y=2,如图①所示,
∴BD=BQ﹣QD=x﹣y=7,
∵将△ABC沿AC所在直线翻折,点B的对应点D落在射线BN上,
∴BC=CD=BD=,AC⊥BD,
∴cosB===,
故选:D.
二、填空题(本大题共12小题,每小题2分,共24分)
7.(2分)的倒数等于 .
【分析】根据倒数的意义求解即可.
【解答】解:∵×=1,
∴的倒数是,
故答案为:.
8.(2分)使有意义的x的取值范围是 x≥2 .
【分析】当被开方数x﹣2为非负数时,二次根式才有意义,列不等式求解.
【解答】解:根据二次根式的意义,得
x﹣2≥0,解得x≥2.
9.(2分)分解因式:9x2﹣1= (3x+1)(3x﹣1) .
【分析】符合平方差公式的结构特点,利用平方差公式分解即可.
【解答】解:9x2﹣1,
=(3x)2﹣12,
=(3x+1)(3x﹣1).
10.(2分)2020年我国将完成脱贫攻坚目标任务.从2012年底到2019年底,我国贫困人口减少了93480000人,用科学记数法把93480000表示为 9.348×107 .
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于93480000有8位,所以可以确定n=8﹣1=7.
【解答】解:93480000=9.348×107.
故答案为:9.348×107.
11.(2分)一元二次方程x2﹣2x=0的两根分别为 x1=0,x2=2 .
【分析】利用因式分解法求解可得.
【解答】解:∵x2﹣2x=0,
∴x(x﹣2)=0,
∴x=0或x﹣2=0,
解得x1=0,x2=2.
12.(2分)一只不透明的袋子中装有5个红球和1个黄球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,摸出红球的概率等于 .
【分析】用红球的个数除以球的总个数即可得.
【解答】解:∵袋子中共有5+1=6个小球,其中红球有5个,
∴搅匀后从中任意摸出1个球,摸出红球的概率等于,
故答案为:.
13.(2分)圆锥底面圆半径为5,母线长为6,则圆锥侧面积等于 30π .
【分析】利用扇形的面积公式计算圆锥侧面积.
【解答】解:圆锥侧面积=×2π×5×6=30π.
故答案为30π.
14.(2分)点O是正五边形ABCDE的中心,分别以各边为直径向正五边形的外部作半圆,组成了一幅美丽的图案(如图).这个图案绕点O至少旋转 72 °后能与原来的图案互相重合.
【分析】直接利用旋转图形的性质进而得出旋转角.
【解答】解:连接OA,OE,则这个图形至少旋转∠AOE才能与原图象重合,
∠AOE==72°.
故答案为:72.
15.(2分)根据数值转换机的示意图,输出的值为 .
【分析】利用代入法和负整数指数幂的计算方法进行计算即可.
【解答】解:当x=﹣3时,31+x=3﹣2=,
故答案为:.
16.(2分)如图,点P是正方形ABCD内位于对角线AC下方的一点,∠1=∠2,则∠BPC的度数为 135 °.
【分析】由正方形的性质可得∠ACB=∠BAC=45°,可得∠2+∠BCP=45°=∠1+∠BCP,由三角形内角和定理可求解.
【解答】解:∵四边形ABCD是正方形,
∴∠ACB=∠BAC=45°,
∴∠2+∠BCP=45°,
∵∠1=∠2,
∴∠1+∠BCP=45°,
∵∠BPC=180°﹣∠1﹣∠BCP,
∴∠BPC=135°,
故答案为:135.
17.(2分)在从小到大排列的五个数x,3,6,8,12中再加入一个数,若这六个数的中位数、平均数与原来五个数的中位数、平均数分别相等,则x的值为 1 .
【分析】原来五个数的中位数是6,如果再加入一个数,变成了偶数个数,则中位数是中间两位数的平均数,由此可知加入的一个数是6,再根据平均数的公式得到关于x的方程,解方程即可求解.
【解答】解:从小到大排列的五个数x,3,6,8,12的中位数是6,
∵再加入一个数,这六个数的中位数与原来五个数的中位数相等,
∴加入的一个数是6,
∵这六个数的平均数与原来五个数的平均数相等,
∴(x+3+6+8+12)=(x+3+6+6+8+12),
解得x=1.
故答案为:1.
18.(2分)如图,在△ABC中,BC=3,将△ABC平移5个单位长度得到△A1B1C1,点P、Q分别是AB、A1C1的中点,PQ的最小值等于 .
【分析】取AC的中点M,A1B1的中点N,连接PM,MQ,NQ,PN,根据平移的性质和三角形的三边关系即可得到结论.
【解答】解:取AC的中点M,A1B1的中点N,连接PM,MQ,NQ,PN,
∵将△ABC平移5个单位长度得到△A1B1C1,
∴B1C1=BC=3,PN=5,
∵点P、Q分别是AB、A1C1的中点,
∴NQ=B1C1=,
∴5﹣≤PQ≤5+,
即≤PQ≤,
∴PQ的最小值等于,
故答案为:.
三、解答题(本大题共10小题,共78分.解答时应写出必要的计算过程、推演步骤或文字说明)
19.(8分)(1)计算:4sin60°﹣+(﹣1)0;
(2)化简(x+1)÷(1+).
【分析】(1)先代入三角函数值、化简二次根式、计算零指数幂,再计算乘法,最后计算加减可得;
(2)先计算括号内分式的加法,再将除法转化为乘法,最后约分即可得.
【解答】解:(1)原式=4×﹣2+1
=2﹣2+1
=1;
(2)原式=(x+1)÷(+)
=(x+1)÷
=(x+1)•
=x.
20.(10分)(1)解方程:=+1;
(2)解不等式组:
【分析】(1)解分式方程的步骤有:去分母,去括号,移项,合并同类项,系数化为1,检验;
(2)先求出每个不等式的解集,再在数轴上表示出其解集,然后根据是否存在公共部分求解即可.
【解答】解:(1)=+1,
2x=1+x+3,
2x﹣x=1+3,
x=4,
经检验,x=4是原方程的解,
∴此方程的解是x=4;
(2),
①4x﹣x>﹣2﹣7,
3x>﹣9,
x>﹣3;
②3x﹣6<4+x,
3x﹣x<4+6,
2x<10,
x<5,
∴不等式组的解集是﹣3<x<5.
21.(6分)如图,AC是四边形ABCD的对角线,∠1=∠B,点E、F分别在AB、BC上,BE=CD,BF=CA,连接EF.
(1)求证:∠D=∠2;
(2)若EF∥AC,∠D=78°,求∠BAC的度数.
【分析】(1)由“SAS”可证△BEF≌△CDA,可得∠D=∠2;
(2)由(1)可得∠D=∠2=78°,由平行线的性质可得∠2=∠BAC=78°.
【解答】证明:(1)在△BEF和△CDA中,
,
∴△BEF≌△CDA(SAS),
∴∠D=∠2;
(2)∵∠D=∠2,∠D=78°,
∴∠D=∠2=78°,
∵EF∥AC,
∴∠2=∠BAC=78°.
22.(6分)教育部发布的义务教育质量监测结果报告显示,我国八年级学生平均每天的睡眠时间达9小时及以上的比例为19.4%.某校数学社团成员采用简单随机抽样的方法,抽取了本校八年级50名学生,对他们一周内平均每天的睡眠时间t(单位:小时)进行了调查,将数据整理后绘制成下表:
平均每天的睡眠时间分组
5≤t<6
6≤t<7
7≤t<8
8≤t<9
9小时及以上
频数
1
5
m
24
n
该样本中学生平均每天的睡眠时间达9小时及以上的比例高于全国的这项数据,达到了22%.
(1)求表格中n的值;
(2)该校八年级共400名学生,估计其中平均每天的睡眠时间在7≤t<8这个范围内的人数是多少.
【分析】(1)根据频率=求解可得;
(2)先根据频数的和是50及n的值求出m的值,再用总人数乘以样本中平均每天的睡眠时间在7≤t<8这个范围内的人数所占比例即可得.
【解答】解:(1)n=50×22%=11;
(2)m=50﹣1﹣5﹣24﹣11=9,
所以估计该校平均每天的睡眠时间在7≤t<8这个范围内的人数是400×=72(人).
23.(6分)智慧的中国古代先民发明了抽象的符号来表达丰富的含义.例如,符号“”有刚毅的含义,符号“”有愉快的含义.符号中的“”表示“阴”,“”表示“阳”,类似这样自上而下排成的三行符号还有其他的含义.所有这些三行符号中,每一行只有一个阴或一个阳,且出现阴、阳的可能性相同.
(1)所有这些三行符号共有 8 种;
(2)若随机画一个这样的三行符号,求“画出含有一个阴和两个阳的三行符号”的概率.
【分析】(1)用列举法举出所有等可能的结果数即可;
(2)根据(1)列举的结果数和概率公式即可得出答案.
【解答】解:(1)共有8种等可能的情况数,分别是:阴,阴,阴;阴,阳,阴;阴,阴,阳;阳,阴,阴;阳,阳,阴;阳,阴,阳;阴,阳,阳;阳、阳、阳;
故答案为:8;
(2)根据第(1)问一个阴、两个阳的共有3种,
则有一个阴和两个阳的三行符号”的概率是.
24.(6分)如图,点E与树AB的根部点A、建筑物CD的底部点C在一条直线上,AC=10m.小明站在点E处观测树顶B的仰角为30°,他从点E出发沿EC方向前进6m到点G时,观测树顶B的仰角为45°,此时恰好看不到建筑物CD的顶部D(H、B、D三点在一条直线上).已知小明的眼睛离地面1.6m,求建筑物CD的高度(结果精确到0.1m).(参考数据:≈1.41,≈1.73.)
【分析】延长FH,交CD于点M,交AB于点N,求CD,只需求出DM即可,即只要求出HN就可以,在Rt△BNF中,设BN=NH=x,则根据tan∠BFN=就可以求出x的值,再根据等腰直角三角形的性质和线段的和可求得CD的长.
【解答】解:如图,延长FH,交CD于点M,交AB于点N,
∵∠BHN=45°,BA⊥MH,
则BN=NH,
设BN=NH=x,
∵HF=6,∠BFN=30°,
∴tan∠BFN==,
即tan30°=,
解得x=8.19,
根据题意可知:
DM=MH=MN+NH,
∵MN=AC=10,
则DM=10+8.19=18.19,
∴CD=DM+MC=DM+EF=18.19+1.6=19.79≈19.8(m).
答:建筑物CD的高度约为19.8m.
25.(6分)如图,正比例函数y=kx(k≠0)的图象与反比例函数y=﹣的图象交于点A(n,2)和点B.
(1)n= ﹣4 ,k= ﹣ ;
(2)点C在y轴正半轴上.∠ACB=90°,求点C的坐标;
(3)点P(m,0)在x轴上,∠APB为锐角,直接写出m的取值范围.
【分析】(1)把A点坐标代入反比例函数解析式求得n,再把求得的A点坐标代入正比例函数解析式求得k;
(2)可设点C(0,b),只要求出b的值就行,求值一般的方法是相似和勾股定理,此题用相似,只需证明△ACD∽△CBE即可;
(3)在x轴上找到点P1,P2,使AP1⊥P1B,AP2⊥BP2,则点P在P1的左边,在P2的右边就符合要求了.
【解答】解:(1)把A(n,2)代入反比例函数y=﹣中,得n=﹣4,
∴A(﹣4,2),
把A(﹣4,2)代入正比例函数y=kx(k≠0)中,得k=﹣,
故答案为:﹣4;﹣;
(2)过A作AD⊥y轴于D,过B作BE⊥y轴于E,
∵A(﹣4,2),
∴根据双曲线与正比例函数图象的对称性得B(4,﹣2),
设C(0,b),则CD=b﹣2,AD=4,BE=E,CE=b+2,
∵∠ACO+∠OCB=90°,∠OCB+∠CBE=90°,
∴∠ACO=∠CBE,
∵∠ADC=∠CEB=90°,
∴△ACD∽△CBE,
∴,即,
解得,b=2,或b=﹣2(舍),
∴C(0,2);
(3)如图2,过A作AM⊥x轴于M,过B作BN⊥x轴于N,在x轴上原点的两旁取两点P1,P2,使得OP1=OP2=OA=OB,
∴,
∴P1(﹣2,0),P2(2,0),
∵OP1=OP2=OA=OB,
∴四边形AP1BP2为矩形,
∴AP1⊥P1B,AP2⊥BP2,
∵点P(m,0)在x轴上,∠APB为锐角,
∴P点必在P1的左边或P2的右边,
∴m<﹣2或m>2.
26.(8分)如图,▱ABCD中,∠ABC的平分线BO交边AD于点O,OD=4,以点O为圆心,OD长为半径作⊙O,分别交边DA、DC于点M、N.点E在边BC上,OE交⊙O于点G,G为的中点.
(1)求证:四边形ABEO为菱形;
(2)已知cos∠ABC=,连接AE,当AE与⊙O相切时,求AB的长.
【分析】(1)先由G为的中点及同弧所对的圆周角和圆心角的关系得出∠MOG=∠MDN,再由平行四边形的性质得出AO∥BE,∠MDN+∠A=180°,进而判定四边形ABEO是平行四边形,然后证明AB=AO,则可得结论;
(2)过点O作OP⊥BA,交BA的延长线于点P,过点O作OQ⊥BC于点Q,设AB=AO=OE=x,则由cos∠ABC=,可用含x的式子分别表示出PA、OP及OQ,由勾股定理得关于x的方程,解得x的值即可.
【解答】解:(1)证明:∵G为的中点,
∴∠MOG=∠MDN.
∵四边形ABCD是平行四边形.
∴AO∥BE,∠MDN+∠A=180°,
∴∠MOG+∠A=180°,
∴AB∥OE,
∴四边形ABEO是平行四边形.
∵BO平分∠ABE,
∴∠ABO=∠OBE,
又∵∠OBE=∠AOB,
∴∠ABO=∠AOB,
∴AB=AO,
∴四边形ABEO为菱形;
(2)如图,过点O作OP⊥BA,交BA的延长线于点P,过点O作OQ⊥BC于点Q,设AE交OB于点F,
则∠PAO=∠ABC,
设AB=AO=OE=x,则
∵cos∠ABC=,
∴cos∠PAO=,
∴=,
∴PA=x,
∴OP=OQ=x
当AE与⊙O相切时,由菱形的对角线互相垂直,可知F为切点,
∴由勾股定理得:+=82,
解得:x=2.
∴AB的长为2.
27.(11分)【算一算】
如图①,点A、B、C在数轴上,B为AC的中点,点A表示﹣3,点B表示1,则点C表示的数为 5 ,AC长等于 8 ;
【找一找】
如图②,点M、N、P、Q中的一点是数轴的原点,点A、B分别表示实数﹣1、+1,Q是AB的中点,则点 N 是这个数轴的原点;
【画一画】
如图③,点A、B分别表示实数c﹣n、c+n,在这个数轴上作出表示实数n的点E(要求:尺规作图,不写作法,保留作图痕迹);
【用一用】
学校设置了若干个测温通道,学生进校都应测量体温,已知每个测温通道每分钟可检测a个学生.凌老师提出了这样的问题:假设现在校门口有m个学生,每分钟又有b个学生到达校门口.如果开放3个通道,那么用4分钟可使校门口的学生全部进校;如果开放4个通道,那么用2分钟可使校门口的学生全部进校.在这些条件下,a、m、b会有怎样的数量关系呢?
爱思考的小华想到了数轴,如图④,他将4分钟内需要进校的人数m+4b记作+(m+4b),用点A表示;将2分钟内由4个开放通道检测后进校的人数,即校门口减少的人数8a记作﹣8a,用点B表示.
①用圆规在小华画的数轴上分别画出表示+(m+2b)、﹣12a的点F、G,并写出+(m+2b)的实际意义;
②写出a、m的数量关系: m=4a .
【分析】(1)根据数轴上点A对应﹣3,点B对应1,求得AB的长,进而根据AB=BC可求得AC的长以及点C表示的数;
(2)可设原点为O,根据条件可求得AB中点表示的数以及线段AB的长度,根据AB=2,可得AQ=BQ=1,结合OQ的长度即可确定N为数轴的原点;
(3)设AB的中点为M,先求得AB的长度,得到AM=BM=n,根据线段垂直平分线的作法作图即可;
(4)①根据每分钟进校人数为b,每个通道每分钟进入人数为a,列方程组,根据m+2b=OF,m+4b=12a,即可画出F,G点,其中m+2b表示两分钟后,校门口需要进入学校的学生人数;
②解①中的方程组,即可得到m=4a.
【解答】解:(1)【算一算】:记原点为O,
∵AB=1﹣(﹣3)=4,
∴AB=BC=4,
∴OC=OB+BC=5,AC=2AB=8.
所以点C表示的数为5,AC长等于8.
故答案为:5,8;
(2)【找一找】:记原点为O,
∵AB=+1﹣(﹣1)=2,
∴AQ=BQ=1,
∴OQ=OB﹣BQ=+1﹣1=,
∴N为原点.
故答案为:N.
(3)【画一画】:记原点为O,
由AB=c+n﹣(c﹣n)=2n,
作AB的中点M,
得AM=BM=n,
以点O为圆心,
AM=n长为半径作弧交数轴的正半轴于点E,
则点E即为所求;
(4)【用一用】:在数轴上画出点F,G;2分钟后,校门口需要进入学校的学生人数为:m=4a.
∵4分钟内开放3个通道可使学生全部进校,
∴m+4b=3×a×4,即m+4b=12a(Ⅰ);
∵2分钟内开放4个通道可使学生全部进校,
∴m+2b=4×a×2,即m+2b=8a(Ⅱ);
①以O为圆心,OB长为半径作弧交数轴的正半轴于点F,则点F即为所求.
作OB的中点E,则OE=BE=4a,在数轴负半轴上用圆规截取OG=3OE=12a,
则点G即为所求.
+(m+2b)的实际意义:2分钟后,校门口需要进入学校的学生人数;
②方程(Ⅱ)×2﹣方程(Ⅰ)得:m=4a.
故答案为:m=4a.
28.(11分)如图①,直线l经过点(4,0)且平行于y轴,二次函数y=ax2﹣2ax+c(a、c是常数,a<0)的图象经过点M(﹣1,1),交直线l于点N,图象的顶点为D,它的对称轴与x轴交于点C,直线DM、DN分别与x轴相交于A、B两点.
(1)当a=﹣1时,求点N的坐标及的值;
(2)随着a的变化,的值是否发生变化?请说明理由;
(3)如图②,E是x轴上位于点B右侧的点,BC=2BE,DE交抛物线于点F.若FB=FE,求此时的二次函数表达式.
【分析】(1)证明△DME∽△DAC,△DCB∽△DFN,则,,求出AC=,BC=,即可求解;
(2)点D(1,1﹣4a),N(4,1+5a),则ME=2,DE=﹣4a,由(1)的结论得:AC=,BC=,即可求解;
(3)利用△FHE∽△DCE,求出F(﹣,﹣a),即可求解.
【解答】解:(1)分别过点M、N作ME⊥CD于点E,NF⊥DC于点F,
∵ME∥FN∥x轴,
∴△DME∽△DAC,△DCB∽△DFN,
∴,,
∵a=﹣1,则y=﹣x2+2x+c,
将M(﹣1,1)代入上式并解得:c=4,
∴抛物线的表达式为:y=﹣x2+2x+4,
则点D(1,5),N(4,﹣4),
则ME=2,DE=4,DC=5,FN=3,DF=9,
∴,解得:AC=,BC=,
∴=;
(2)不变,理由:
∵y=ax2﹣2ax+c过点M(﹣1,1),则a+2a+c=1,
解得:c=1﹣2a,
∴y=ax2﹣2ax+(1﹣3a),
∴点D(1,1﹣4a),N(4,1+5a),
∴ME=2,DE=﹣4a,
由(1)的结论得:AC=,BC=,
∴=;
(3)过点F作FH⊥x轴于点H,则FH∥l,则△FHE∽△DCE,
∵FB=FE,FH⊥BE,
∴BH=HE,
∵BC=2BE,
则CE=6HE,
∵CD=1﹣4a,
∴FH=,
∵BC=,
∴CH=×=,
∴F(﹣,﹣a),
将点F的坐标代入y=ax2﹣2ax+(1﹣3a)=a(x+1)(x﹣3)+1得:
﹣a=a(﹣+1)(﹣﹣3)+1,
解得:a=﹣或﹣,
故y=﹣x2+x+或y=﹣x2+x+.
一、选择题(本大题共6小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.(3分)下列计算正确的是( )
A.a3+a3=a6 B.(a3)2=a6 C.a6÷a2=a3 D.(ab)3=ab3
2.(3分)如图,将棱长为6的正方体截去一个棱长为3的正方体后,得到一个新的几何体,这个几何体的主视图是( )
A. B. C. D.
3.(3分)一次函数y=kx+3(k≠0)的函数值y随x的增大而增大,它的图象不经过的象限是( )
A.第一 B.第二 C.第三 D.第四
4.(3分)如图,AB是半圆的直径,C、D是半圆上的两点,∠ADC=106°,则∠CAB等于( )
A.10° B.14° C.16° D.26°
5.(3分)点P(m,n)在以y轴为对称轴的二次函数y=x2+ax+4的图象上.则m﹣n的最大值等于( )
A. B.4 C.﹣ D.﹣
6.(3分)如图①,AB=5,射线AM∥BN,点C在射线BN上,将△ABC沿AC所在直线翻折,点B的对应点D落在射线BN上,点P,Q分别在射线AM、BN上,PQ∥AB.设AP=x,QD=y.若y关于x的函数图象(如图②)经过点E(9,2),则cosB的值等于( )
A. B. C. D.
二、填空题(本大题共12小题,每小题2分,共24分)
7.(2分)的倒数等于 .
8.(2分)使有意义的x的取值范围是 .
9.(2分)分解因式:9x2﹣1= .
10.(2分)2020年我国将完成脱贫攻坚目标任务.从2012年底到2019年底,我国贫困人口减少了93480000人,用科学记数法把93480000表示为 .
11.(2分)一元二次方程x2﹣2x=0的两根分别为 .
12.(2分)一只不透明的袋子中装有5个红球和1个黄球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,摸出红球的概率等于 .
13.(2分)圆锥底面圆半径为5,母线长为6,则圆锥侧面积等于 .
14.(2分)点O是正五边形ABCDE的中心,分别以各边为直径向正五边形的外部作半圆,组成了一幅美丽的图案(如图).这个图案绕点O至少旋转 °后能与原来的图案互相重合.
15.(2分)根据数值转换机的示意图,输出的值为 .
16.(2分)如图,点P是正方形ABCD内位于对角线AC下方的一点,∠1=∠2,则∠BPC的度数为 °.
17.(2分)在从小到大排列的五个数x,3,6,8,12中再加入一个数,若这六个数的中位数、平均数与原来五个数的中位数、平均数分别相等,则x的值为 .
18.(2分)如图,在△ABC中,BC=3,将△ABC平移5个单位长度得到△A1B1C1,点P、Q分别是AB、A1C1的中点,PQ的最小值等于 .
三、解答题(本大题共10小题,共78分.解答时应写出必要的计算过程、推演步骤或文字说明)
19.(8分)(1)计算:4sin60°﹣+(﹣1)0;
(2)化简(x+1)÷(1+).
20.(10分)(1)解方程:=+1;
(2)解不等式组:
21.(6分)如图,AC是四边形ABCD的对角线,∠1=∠B,点E、F分别在AB、BC上,BE=CD,BF=CA,连接EF.
(1)求证:∠D=∠2;
(2)若EF∥AC,∠D=78°,求∠BAC的度数.
22.(6分)教育部发布的义务教育质量监测结果报告显示,我国八年级学生平均每天的睡眠时间达9小时及以上的比例为19.4%.某校数学社团成员采用简单随机抽样的方法,抽取了本校八年级50名学生,对他们一周内平均每天的睡眠时间t(单位:小时)进行了调查,将数据整理后绘制成下表:
平均每天的睡眠时间分组
5≤t<6
6≤t<7
7≤t<8
8≤t<9
9小时及以上
频数
1
5
m
24
n
该样本中学生平均每天的睡眠时间达9小时及以上的比例高于全国的这项数据,达到了22%.
(1)求表格中n的值;
(2)该校八年级共400名学生,估计其中平均每天的睡眠时间在7≤t<8这个范围内的人数是多少.
23.(6分)智慧的中国古代先民发明了抽象的符号来表达丰富的含义.例如,符号“”有刚毅的含义,符号“”有愉快的含义.符号中的“”表示“阴”,“”表示“阳”,类似这样自上而下排成的三行符号还有其他的含义.所有这些三行符号中,每一行只有一个阴或一个阳,且出现阴、阳的可能性相同.
(1)所有这些三行符号共有 种;
(2)若随机画一个这样的三行符号,求“画出含有一个阴和两个阳的三行符号”的概率.
24.(6分)如图,点E与树AB的根部点A、建筑物CD的底部点C在一条直线上,AC=10m.小明站在点E处观测树顶B的仰角为30°,他从点E出发沿EC方向前进6m到点G时,观测树顶B的仰角为45°,此时恰好看不到建筑物CD的顶部D(H、B、D三点在一条直线上).已知小明的眼睛离地面1.6m,求建筑物CD的高度(结果精确到0.1m).(参考数据:≈1.41,≈1.73.)
25.(6分)如图,正比例函数y=kx(k≠0)的图象与反比例函数y=﹣的图象交于点A(n,2)和点B.
(1)n= ,k= ;
(2)点C在y轴正半轴上.∠ACB=90°,求点C的坐标;
(3)点P(m,0)在x轴上,∠APB为锐角,直接写出m的取值范围.
26.(8分)如图,▱ABCD中,∠ABC的平分线BO交边AD于点O,OD=4,以点O为圆心,OD长为半径作⊙O,分别交边DA、DC于点M、N.点E在边BC上,OE交⊙O于点G,G为的中点.
(1)求证:四边形ABEO为菱形;
(2)已知cos∠ABC=,连接AE,当AE与⊙O相切时,求AB的长.
27.(11分)【算一算】
如图①,点A、B、C在数轴上,B为AC的中点,点A表示﹣3,点B表示1,则点C表示的数为 ,AC长等于 ;
【找一找】
如图②,点M、N、P、Q中的一点是数轴的原点,点A、B分别表示实数﹣1、+1,Q是AB的中点,则点 是这个数轴的原点;
【画一画】
如图③,点A、B分别表示实数c﹣n、c+n,在这个数轴上作出表示实数n的点E(要求:尺规作图,不写作法,保留作图痕迹);
【用一用】
学校设置了若干个测温通道,学生进校都应测量体温,已知每个测温通道每分钟可检测a个学生.凌老师提出了这样的问题:假设现在校门口有m个学生,每分钟又有b个学生到达校门口.如果开放3个通道,那么用4分钟可使校门口的学生全部进校;如果开放4个通道,那么用2分钟可使校门口的学生全部进校.在这些条件下,a、m、b会有怎样的数量关系呢?
爱思考的小华想到了数轴,如图④,他将4分钟内需要进校的人数m+4b记作+(m+4b),用点A表示;将2分钟内由4个开放通道检测后进校的人数,即校门口减少的人数8a记作﹣8a,用点B表示.
①用圆规在小华画的数轴上分别画出表示+(m+2b)、﹣12a的点F、G,并写出+(m+2b)的实际意义;
②写出a、m的数量关系: .
28.(11分)如图①,直线l经过点(4,0)且平行于y轴,二次函数y=ax2﹣2ax+c(a、c是常数,a<0)的图象经过点M(﹣1,1),交直线l于点N,图象的顶点为D,它的对称轴与x轴交于点C,直线DM、DN分别与x轴相交于A、B两点.
(1)当a=﹣1时,求点N的坐标及的值;
(2)随着a的变化,的值是否发生变化?请说明理由;
(3)如图②,E是x轴上位于点B右侧的点,BC=2BE,DE交抛物线于点F.若FB=FE,求此时的二次函数表达式.
2020年江苏省镇江市中考数学试卷
参考答案与试题解析
一、选择题(本大题共6小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.(3分)下列计算正确的是( )
A.a3+a3=a6 B.(a3)2=a6 C.a6÷a2=a3 D.(ab)3=ab3
【分析】根据同底数幂的乘除法、幂的乘方的计算法则进行计算即可.
【解答】解:a3+a3=2a3,因此选项A不正确;
(a3)2=a3×2=a6,因此选项B正确;
a6÷a2=a6﹣2=m4,因此选项C不正确;
(ab)3=a3b3,因此选项D不正确;
故选:B.
2.(3分)如图,将棱长为6的正方体截去一个棱长为3的正方体后,得到一个新的几何体,这个几何体的主视图是( )
A. B. C. D.
【分析】根据从正面看得到的视图是主视图,可得答案.
【解答】解:从正面看是一个正方形,正方形的右上角是一个小正方形,
故选:A.
3.(3分)一次函数y=kx+3(k≠0)的函数值y随x的增大而增大,它的图象不经过的象限是( )
A.第一 B.第二 C.第三 D.第四
【分析】根据一次函数y=kx+3(k≠0)的函数值y随x的增大而增大,可以得到k>0,与y轴的交点为(0,3),然后根据一次函数的性质,即可得到该函数图象经过哪几个象限,不经过哪个象限,从而可以解答本题.
【解答】解:∵一次函数y=kx+3(k≠0)的函数值y随x的增大而增大,
∴k>0,该函数过点(0,3),
∴该函数的图象经过第一、二、三象限,不经过第四象限,
故选:D.
4.(3分)如图,AB是半圆的直径,C、D是半圆上的两点,∠ADC=106°,则∠CAB等于( )
A.10° B.14° C.16° D.26°
【分析】连接BD,如图,根据圆周角定理得到∠ADB=90°,则可计算出∠BDC=16°,然后根据圆周角定理得到∠CAB的度数.
【解答】解:连接BD,如图,
∵AB是半圆的直径,
∴∠ADB=90°,
∴∠BDC=∠ADC﹣∠ADB=106°﹣90°=16°,
∴∠CAB=∠BDC=16°.
故选:C.
5.(3分)点P(m,n)在以y轴为对称轴的二次函数y=x2+ax+4的图象上.则m﹣n的最大值等于( )
A. B.4 C.﹣ D.﹣
【分析】根据题意,可以得到a的值,m和n的关系,然后将m、n作差,利用二次函数的性质,即可得到m﹣n的最大值,本题得以解决.
【解答】解:∵点P(m,n)在以y轴为对称轴的二次函数y=x2+ax+4的图象上,
∴a=0,
∴n=m2+4,
∴m﹣n=m﹣(m2+4)=﹣m2+m﹣4=﹣(m﹣)2﹣,
∴当m=时,m﹣n取得最大值,此时m﹣n=﹣,
故选:C.
6.(3分)如图①,AB=5,射线AM∥BN,点C在射线BN上,将△ABC沿AC所在直线翻折,点B的对应点D落在射线BN上,点P,Q分别在射线AM、BN上,PQ∥AB.设AP=x,QD=y.若y关于x的函数图象(如图②)经过点E(9,2),则cosB的值等于( )
A. B. C. D.
【分析】由题意可得四边形ABQP是平行四边形,可得AP=BQ=x,由图象②可得当x=9时,y=2,此时点Q在点D下方,且BQ=x=9时,y=2,如图①所示,可求BD=7,由折叠的性质可求BC的长,由锐角三角函数可求解.
【解答】解:∵AM∥BN,PQ∥AB,
∴四边形ABQP是平行四边形,
∴AP=BQ=x,
由图②可得当x=9时,y=2,
此时点Q在点D下方,且BQ=x=9时,y=2,如图①所示,
∴BD=BQ﹣QD=x﹣y=7,
∵将△ABC沿AC所在直线翻折,点B的对应点D落在射线BN上,
∴BC=CD=BD=,AC⊥BD,
∴cosB===,
故选:D.
二、填空题(本大题共12小题,每小题2分,共24分)
7.(2分)的倒数等于 .
【分析】根据倒数的意义求解即可.
【解答】解:∵×=1,
∴的倒数是,
故答案为:.
8.(2分)使有意义的x的取值范围是 x≥2 .
【分析】当被开方数x﹣2为非负数时,二次根式才有意义,列不等式求解.
【解答】解:根据二次根式的意义,得
x﹣2≥0,解得x≥2.
9.(2分)分解因式:9x2﹣1= (3x+1)(3x﹣1) .
【分析】符合平方差公式的结构特点,利用平方差公式分解即可.
【解答】解:9x2﹣1,
=(3x)2﹣12,
=(3x+1)(3x﹣1).
10.(2分)2020年我国将完成脱贫攻坚目标任务.从2012年底到2019年底,我国贫困人口减少了93480000人,用科学记数法把93480000表示为 9.348×107 .
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于93480000有8位,所以可以确定n=8﹣1=7.
【解答】解:93480000=9.348×107.
故答案为:9.348×107.
11.(2分)一元二次方程x2﹣2x=0的两根分别为 x1=0,x2=2 .
【分析】利用因式分解法求解可得.
【解答】解:∵x2﹣2x=0,
∴x(x﹣2)=0,
∴x=0或x﹣2=0,
解得x1=0,x2=2.
12.(2分)一只不透明的袋子中装有5个红球和1个黄球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,摸出红球的概率等于 .
【分析】用红球的个数除以球的总个数即可得.
【解答】解:∵袋子中共有5+1=6个小球,其中红球有5个,
∴搅匀后从中任意摸出1个球,摸出红球的概率等于,
故答案为:.
13.(2分)圆锥底面圆半径为5,母线长为6,则圆锥侧面积等于 30π .
【分析】利用扇形的面积公式计算圆锥侧面积.
【解答】解:圆锥侧面积=×2π×5×6=30π.
故答案为30π.
14.(2分)点O是正五边形ABCDE的中心,分别以各边为直径向正五边形的外部作半圆,组成了一幅美丽的图案(如图).这个图案绕点O至少旋转 72 °后能与原来的图案互相重合.
【分析】直接利用旋转图形的性质进而得出旋转角.
【解答】解:连接OA,OE,则这个图形至少旋转∠AOE才能与原图象重合,
∠AOE==72°.
故答案为:72.
15.(2分)根据数值转换机的示意图,输出的值为 .
【分析】利用代入法和负整数指数幂的计算方法进行计算即可.
【解答】解:当x=﹣3时,31+x=3﹣2=,
故答案为:.
16.(2分)如图,点P是正方形ABCD内位于对角线AC下方的一点,∠1=∠2,则∠BPC的度数为 135 °.
【分析】由正方形的性质可得∠ACB=∠BAC=45°,可得∠2+∠BCP=45°=∠1+∠BCP,由三角形内角和定理可求解.
【解答】解:∵四边形ABCD是正方形,
∴∠ACB=∠BAC=45°,
∴∠2+∠BCP=45°,
∵∠1=∠2,
∴∠1+∠BCP=45°,
∵∠BPC=180°﹣∠1﹣∠BCP,
∴∠BPC=135°,
故答案为:135.
17.(2分)在从小到大排列的五个数x,3,6,8,12中再加入一个数,若这六个数的中位数、平均数与原来五个数的中位数、平均数分别相等,则x的值为 1 .
【分析】原来五个数的中位数是6,如果再加入一个数,变成了偶数个数,则中位数是中间两位数的平均数,由此可知加入的一个数是6,再根据平均数的公式得到关于x的方程,解方程即可求解.
【解答】解:从小到大排列的五个数x,3,6,8,12的中位数是6,
∵再加入一个数,这六个数的中位数与原来五个数的中位数相等,
∴加入的一个数是6,
∵这六个数的平均数与原来五个数的平均数相等,
∴(x+3+6+8+12)=(x+3+6+6+8+12),
解得x=1.
故答案为:1.
18.(2分)如图,在△ABC中,BC=3,将△ABC平移5个单位长度得到△A1B1C1,点P、Q分别是AB、A1C1的中点,PQ的最小值等于 .
【分析】取AC的中点M,A1B1的中点N,连接PM,MQ,NQ,PN,根据平移的性质和三角形的三边关系即可得到结论.
【解答】解:取AC的中点M,A1B1的中点N,连接PM,MQ,NQ,PN,
∵将△ABC平移5个单位长度得到△A1B1C1,
∴B1C1=BC=3,PN=5,
∵点P、Q分别是AB、A1C1的中点,
∴NQ=B1C1=,
∴5﹣≤PQ≤5+,
即≤PQ≤,
∴PQ的最小值等于,
故答案为:.
三、解答题(本大题共10小题,共78分.解答时应写出必要的计算过程、推演步骤或文字说明)
19.(8分)(1)计算:4sin60°﹣+(﹣1)0;
(2)化简(x+1)÷(1+).
【分析】(1)先代入三角函数值、化简二次根式、计算零指数幂,再计算乘法,最后计算加减可得;
(2)先计算括号内分式的加法,再将除法转化为乘法,最后约分即可得.
【解答】解:(1)原式=4×﹣2+1
=2﹣2+1
=1;
(2)原式=(x+1)÷(+)
=(x+1)÷
=(x+1)•
=x.
20.(10分)(1)解方程:=+1;
(2)解不等式组:
【分析】(1)解分式方程的步骤有:去分母,去括号,移项,合并同类项,系数化为1,检验;
(2)先求出每个不等式的解集,再在数轴上表示出其解集,然后根据是否存在公共部分求解即可.
【解答】解:(1)=+1,
2x=1+x+3,
2x﹣x=1+3,
x=4,
经检验,x=4是原方程的解,
∴此方程的解是x=4;
(2),
①4x﹣x>﹣2﹣7,
3x>﹣9,
x>﹣3;
②3x﹣6<4+x,
3x﹣x<4+6,
2x<10,
x<5,
∴不等式组的解集是﹣3<x<5.
21.(6分)如图,AC是四边形ABCD的对角线,∠1=∠B,点E、F分别在AB、BC上,BE=CD,BF=CA,连接EF.
(1)求证:∠D=∠2;
(2)若EF∥AC,∠D=78°,求∠BAC的度数.
【分析】(1)由“SAS”可证△BEF≌△CDA,可得∠D=∠2;
(2)由(1)可得∠D=∠2=78°,由平行线的性质可得∠2=∠BAC=78°.
【解答】证明:(1)在△BEF和△CDA中,
,
∴△BEF≌△CDA(SAS),
∴∠D=∠2;
(2)∵∠D=∠2,∠D=78°,
∴∠D=∠2=78°,
∵EF∥AC,
∴∠2=∠BAC=78°.
22.(6分)教育部发布的义务教育质量监测结果报告显示,我国八年级学生平均每天的睡眠时间达9小时及以上的比例为19.4%.某校数学社团成员采用简单随机抽样的方法,抽取了本校八年级50名学生,对他们一周内平均每天的睡眠时间t(单位:小时)进行了调查,将数据整理后绘制成下表:
平均每天的睡眠时间分组
5≤t<6
6≤t<7
7≤t<8
8≤t<9
9小时及以上
频数
1
5
m
24
n
该样本中学生平均每天的睡眠时间达9小时及以上的比例高于全国的这项数据,达到了22%.
(1)求表格中n的值;
(2)该校八年级共400名学生,估计其中平均每天的睡眠时间在7≤t<8这个范围内的人数是多少.
【分析】(1)根据频率=求解可得;
(2)先根据频数的和是50及n的值求出m的值,再用总人数乘以样本中平均每天的睡眠时间在7≤t<8这个范围内的人数所占比例即可得.
【解答】解:(1)n=50×22%=11;
(2)m=50﹣1﹣5﹣24﹣11=9,
所以估计该校平均每天的睡眠时间在7≤t<8这个范围内的人数是400×=72(人).
23.(6分)智慧的中国古代先民发明了抽象的符号来表达丰富的含义.例如,符号“”有刚毅的含义,符号“”有愉快的含义.符号中的“”表示“阴”,“”表示“阳”,类似这样自上而下排成的三行符号还有其他的含义.所有这些三行符号中,每一行只有一个阴或一个阳,且出现阴、阳的可能性相同.
(1)所有这些三行符号共有 8 种;
(2)若随机画一个这样的三行符号,求“画出含有一个阴和两个阳的三行符号”的概率.
【分析】(1)用列举法举出所有等可能的结果数即可;
(2)根据(1)列举的结果数和概率公式即可得出答案.
【解答】解:(1)共有8种等可能的情况数,分别是:阴,阴,阴;阴,阳,阴;阴,阴,阳;阳,阴,阴;阳,阳,阴;阳,阴,阳;阴,阳,阳;阳、阳、阳;
故答案为:8;
(2)根据第(1)问一个阴、两个阳的共有3种,
则有一个阴和两个阳的三行符号”的概率是.
24.(6分)如图,点E与树AB的根部点A、建筑物CD的底部点C在一条直线上,AC=10m.小明站在点E处观测树顶B的仰角为30°,他从点E出发沿EC方向前进6m到点G时,观测树顶B的仰角为45°,此时恰好看不到建筑物CD的顶部D(H、B、D三点在一条直线上).已知小明的眼睛离地面1.6m,求建筑物CD的高度(结果精确到0.1m).(参考数据:≈1.41,≈1.73.)
【分析】延长FH,交CD于点M,交AB于点N,求CD,只需求出DM即可,即只要求出HN就可以,在Rt△BNF中,设BN=NH=x,则根据tan∠BFN=就可以求出x的值,再根据等腰直角三角形的性质和线段的和可求得CD的长.
【解答】解:如图,延长FH,交CD于点M,交AB于点N,
∵∠BHN=45°,BA⊥MH,
则BN=NH,
设BN=NH=x,
∵HF=6,∠BFN=30°,
∴tan∠BFN==,
即tan30°=,
解得x=8.19,
根据题意可知:
DM=MH=MN+NH,
∵MN=AC=10,
则DM=10+8.19=18.19,
∴CD=DM+MC=DM+EF=18.19+1.6=19.79≈19.8(m).
答:建筑物CD的高度约为19.8m.
25.(6分)如图,正比例函数y=kx(k≠0)的图象与反比例函数y=﹣的图象交于点A(n,2)和点B.
(1)n= ﹣4 ,k= ﹣ ;
(2)点C在y轴正半轴上.∠ACB=90°,求点C的坐标;
(3)点P(m,0)在x轴上,∠APB为锐角,直接写出m的取值范围.
【分析】(1)把A点坐标代入反比例函数解析式求得n,再把求得的A点坐标代入正比例函数解析式求得k;
(2)可设点C(0,b),只要求出b的值就行,求值一般的方法是相似和勾股定理,此题用相似,只需证明△ACD∽△CBE即可;
(3)在x轴上找到点P1,P2,使AP1⊥P1B,AP2⊥BP2,则点P在P1的左边,在P2的右边就符合要求了.
【解答】解:(1)把A(n,2)代入反比例函数y=﹣中,得n=﹣4,
∴A(﹣4,2),
把A(﹣4,2)代入正比例函数y=kx(k≠0)中,得k=﹣,
故答案为:﹣4;﹣;
(2)过A作AD⊥y轴于D,过B作BE⊥y轴于E,
∵A(﹣4,2),
∴根据双曲线与正比例函数图象的对称性得B(4,﹣2),
设C(0,b),则CD=b﹣2,AD=4,BE=E,CE=b+2,
∵∠ACO+∠OCB=90°,∠OCB+∠CBE=90°,
∴∠ACO=∠CBE,
∵∠ADC=∠CEB=90°,
∴△ACD∽△CBE,
∴,即,
解得,b=2,或b=﹣2(舍),
∴C(0,2);
(3)如图2,过A作AM⊥x轴于M,过B作BN⊥x轴于N,在x轴上原点的两旁取两点P1,P2,使得OP1=OP2=OA=OB,
∴,
∴P1(﹣2,0),P2(2,0),
∵OP1=OP2=OA=OB,
∴四边形AP1BP2为矩形,
∴AP1⊥P1B,AP2⊥BP2,
∵点P(m,0)在x轴上,∠APB为锐角,
∴P点必在P1的左边或P2的右边,
∴m<﹣2或m>2.
26.(8分)如图,▱ABCD中,∠ABC的平分线BO交边AD于点O,OD=4,以点O为圆心,OD长为半径作⊙O,分别交边DA、DC于点M、N.点E在边BC上,OE交⊙O于点G,G为的中点.
(1)求证:四边形ABEO为菱形;
(2)已知cos∠ABC=,连接AE,当AE与⊙O相切时,求AB的长.
【分析】(1)先由G为的中点及同弧所对的圆周角和圆心角的关系得出∠MOG=∠MDN,再由平行四边形的性质得出AO∥BE,∠MDN+∠A=180°,进而判定四边形ABEO是平行四边形,然后证明AB=AO,则可得结论;
(2)过点O作OP⊥BA,交BA的延长线于点P,过点O作OQ⊥BC于点Q,设AB=AO=OE=x,则由cos∠ABC=,可用含x的式子分别表示出PA、OP及OQ,由勾股定理得关于x的方程,解得x的值即可.
【解答】解:(1)证明:∵G为的中点,
∴∠MOG=∠MDN.
∵四边形ABCD是平行四边形.
∴AO∥BE,∠MDN+∠A=180°,
∴∠MOG+∠A=180°,
∴AB∥OE,
∴四边形ABEO是平行四边形.
∵BO平分∠ABE,
∴∠ABO=∠OBE,
又∵∠OBE=∠AOB,
∴∠ABO=∠AOB,
∴AB=AO,
∴四边形ABEO为菱形;
(2)如图,过点O作OP⊥BA,交BA的延长线于点P,过点O作OQ⊥BC于点Q,设AE交OB于点F,
则∠PAO=∠ABC,
设AB=AO=OE=x,则
∵cos∠ABC=,
∴cos∠PAO=,
∴=,
∴PA=x,
∴OP=OQ=x
当AE与⊙O相切时,由菱形的对角线互相垂直,可知F为切点,
∴由勾股定理得:+=82,
解得:x=2.
∴AB的长为2.
27.(11分)【算一算】
如图①,点A、B、C在数轴上,B为AC的中点,点A表示﹣3,点B表示1,则点C表示的数为 5 ,AC长等于 8 ;
【找一找】
如图②,点M、N、P、Q中的一点是数轴的原点,点A、B分别表示实数﹣1、+1,Q是AB的中点,则点 N 是这个数轴的原点;
【画一画】
如图③,点A、B分别表示实数c﹣n、c+n,在这个数轴上作出表示实数n的点E(要求:尺规作图,不写作法,保留作图痕迹);
【用一用】
学校设置了若干个测温通道,学生进校都应测量体温,已知每个测温通道每分钟可检测a个学生.凌老师提出了这样的问题:假设现在校门口有m个学生,每分钟又有b个学生到达校门口.如果开放3个通道,那么用4分钟可使校门口的学生全部进校;如果开放4个通道,那么用2分钟可使校门口的学生全部进校.在这些条件下,a、m、b会有怎样的数量关系呢?
爱思考的小华想到了数轴,如图④,他将4分钟内需要进校的人数m+4b记作+(m+4b),用点A表示;将2分钟内由4个开放通道检测后进校的人数,即校门口减少的人数8a记作﹣8a,用点B表示.
①用圆规在小华画的数轴上分别画出表示+(m+2b)、﹣12a的点F、G,并写出+(m+2b)的实际意义;
②写出a、m的数量关系: m=4a .
【分析】(1)根据数轴上点A对应﹣3,点B对应1,求得AB的长,进而根据AB=BC可求得AC的长以及点C表示的数;
(2)可设原点为O,根据条件可求得AB中点表示的数以及线段AB的长度,根据AB=2,可得AQ=BQ=1,结合OQ的长度即可确定N为数轴的原点;
(3)设AB的中点为M,先求得AB的长度,得到AM=BM=n,根据线段垂直平分线的作法作图即可;
(4)①根据每分钟进校人数为b,每个通道每分钟进入人数为a,列方程组,根据m+2b=OF,m+4b=12a,即可画出F,G点,其中m+2b表示两分钟后,校门口需要进入学校的学生人数;
②解①中的方程组,即可得到m=4a.
【解答】解:(1)【算一算】:记原点为O,
∵AB=1﹣(﹣3)=4,
∴AB=BC=4,
∴OC=OB+BC=5,AC=2AB=8.
所以点C表示的数为5,AC长等于8.
故答案为:5,8;
(2)【找一找】:记原点为O,
∵AB=+1﹣(﹣1)=2,
∴AQ=BQ=1,
∴OQ=OB﹣BQ=+1﹣1=,
∴N为原点.
故答案为:N.
(3)【画一画】:记原点为O,
由AB=c+n﹣(c﹣n)=2n,
作AB的中点M,
得AM=BM=n,
以点O为圆心,
AM=n长为半径作弧交数轴的正半轴于点E,
则点E即为所求;
(4)【用一用】:在数轴上画出点F,G;2分钟后,校门口需要进入学校的学生人数为:m=4a.
∵4分钟内开放3个通道可使学生全部进校,
∴m+4b=3×a×4,即m+4b=12a(Ⅰ);
∵2分钟内开放4个通道可使学生全部进校,
∴m+2b=4×a×2,即m+2b=8a(Ⅱ);
①以O为圆心,OB长为半径作弧交数轴的正半轴于点F,则点F即为所求.
作OB的中点E,则OE=BE=4a,在数轴负半轴上用圆规截取OG=3OE=12a,
则点G即为所求.
+(m+2b)的实际意义:2分钟后,校门口需要进入学校的学生人数;
②方程(Ⅱ)×2﹣方程(Ⅰ)得:m=4a.
故答案为:m=4a.
28.(11分)如图①,直线l经过点(4,0)且平行于y轴,二次函数y=ax2﹣2ax+c(a、c是常数,a<0)的图象经过点M(﹣1,1),交直线l于点N,图象的顶点为D,它的对称轴与x轴交于点C,直线DM、DN分别与x轴相交于A、B两点.
(1)当a=﹣1时,求点N的坐标及的值;
(2)随着a的变化,的值是否发生变化?请说明理由;
(3)如图②,E是x轴上位于点B右侧的点,BC=2BE,DE交抛物线于点F.若FB=FE,求此时的二次函数表达式.
【分析】(1)证明△DME∽△DAC,△DCB∽△DFN,则,,求出AC=,BC=,即可求解;
(2)点D(1,1﹣4a),N(4,1+5a),则ME=2,DE=﹣4a,由(1)的结论得:AC=,BC=,即可求解;
(3)利用△FHE∽△DCE,求出F(﹣,﹣a),即可求解.
【解答】解:(1)分别过点M、N作ME⊥CD于点E,NF⊥DC于点F,
∵ME∥FN∥x轴,
∴△DME∽△DAC,△DCB∽△DFN,
∴,,
∵a=﹣1,则y=﹣x2+2x+c,
将M(﹣1,1)代入上式并解得:c=4,
∴抛物线的表达式为:y=﹣x2+2x+4,
则点D(1,5),N(4,﹣4),
则ME=2,DE=4,DC=5,FN=3,DF=9,
∴,解得:AC=,BC=,
∴=;
(2)不变,理由:
∵y=ax2﹣2ax+c过点M(﹣1,1),则a+2a+c=1,
解得:c=1﹣2a,
∴y=ax2﹣2ax+(1﹣3a),
∴点D(1,1﹣4a),N(4,1+5a),
∴ME=2,DE=﹣4a,
由(1)的结论得:AC=,BC=,
∴=;
(3)过点F作FH⊥x轴于点H,则FH∥l,则△FHE∽△DCE,
∵FB=FE,FH⊥BE,
∴BH=HE,
∵BC=2BE,
则CE=6HE,
∵CD=1﹣4a,
∴FH=,
∵BC=,
∴CH=×=,
∴F(﹣,﹣a),
将点F的坐标代入y=ax2﹣2ax+(1﹣3a)=a(x+1)(x﹣3)+1得:
﹣a=a(﹣+1)(﹣﹣3)+1,
解得:a=﹣或﹣,
故y=﹣x2+x+或y=﹣x2+x+.
相关资料
更多