还剩27页未读,
继续阅读
所属成套资源:2017-2020中考数学真题试卷-四川省
成套系列资料,整套一键下载
- 2020年四川省成都市中考数学试卷 试卷 9 次下载
- 2020年四川省德阳市中考数学真题及答案 试卷 2 次下载
- 2019四川省攀枝花中考数学试卷(解析版) 试卷 0 次下载
- 2019四川省成都市中考数学试题(Word解析版) 试卷 1 次下载
- 2019四川省广安市中考数学试题(解析版) 试卷 0 次下载
2020年四川省绵阳市中考数学试卷 解析版
展开
2020年四川省绵阳市中考数学试卷
一、选择题:本大题共12小题,每小题3分,共36分.每小题只有一个选项符合题目要求.
1.(3分)﹣3的相反数是( )
A.﹣3 B.﹣ C. D.3
2.(3分)如图是以正方形的边长为直径,在正方形内画半圆得到的图形,则此图形的对称轴有( )
A.2条 B.4条 C.6条 D.8条
3.(3分)近年来,华为手机越来越受到消费者的青睐.截至2019年12月底,华为5G手机全球总发货量突破690万台.将690万用科学记数法表示为( )
A.0.69×107 B.69×105 C.6.9×105 D.6.9×106
4.(3分)下列四个图形中,不能作为正方体的展开图的是( )
A. B.
C. D.
5.(3分)若有意义,则a的取值范围是( )
A.a≥1 B.a≤1 C.a≥0 D.a≤﹣1
6.(3分)《九章算术》中记载“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?此问题中羊价为( )
A.160钱 B.155钱 C.150钱 D.145钱
7.(3分)如图,在四边形ABCD中,∠A=∠C=90°,DF∥BC,∠ABC的平分线BE交DF于点G,GH⊥DF,点E恰好为DH的中点,若AE=3,CD=2,则GH=( )
A.1 B.2 C.3 D.4
8.(3分)将一个篮球和一个足球随机放入三个不同的篮子中,则恰有一个篮子为空的概率为( )
A. B. C. D.
9.(3分)在螳螂的示意图中,AB∥DE,△ABC是等腰三角形,∠ABC=124°,∠CDE=72°,则∠ACD=( )
A.16° B.28° C.44° D.45°
10.(3分)甲、乙二人同驾一辆车出游,各匀速行驶一半路程,共用3小时,到达目的地后,甲对乙说:“我用你所花的时间,可以行驶180km”,乙对甲说:“我用你所花的时间,只能行驶80km”.从他们的交谈中可以判断,乙驾车的时长为( )
A.1.2小时 B.1.6小时 C.1.8小时 D.2小时
11.(3分)三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为( )
A.4米 B.5米 C.2米 D.7米
12.(3分)如图,在四边形ABCD中,AD∥BC,∠ABC=90°,AB=2,AD=2,将△ABC绕点C顺时针方向旋转后得△A′B′C,当A′B′恰好经过点D时,△B′CD为等腰三角形,若BB′=2,则AA′=( )
A. B.2 C. D.
二、填空题:本大题共6小题,每小题4分,共24分.将答案填写在答题卡相应的横线上.
13.(4分)因式分解:x3y﹣4xy3= .
14.(4分)平面直角坐标系中,将点A(﹣1,2)先向左平移2个单位,再向上平移1个单位后得到的点A1的坐标为 .
15.(4分)若多项式xy|m﹣n|+(n﹣2)x2y2+1是关于x,y的三次多项式,则mn= .
16.(4分)我市认真落实国家“精准扶贫”政策,计划在对口帮扶的贫困县种植甲、乙两种火龙果共100亩,根据市场调查,甲、乙两种火龙果每亩的种植成本分别为0.9万元、1.1万元,每亩的销售额分别为2万元、2.5万元,如果要求种植成本不少于98万元,但不超过100万元,且所有火龙果能全部售出,则该县在此项目中获得的最大利润是 万元.(利润=销售额﹣种植成本)
17.(4分)如图,四边形ABCD中,AB∥CD,∠ABC=60°,AD=BC=CD=4,点M是四边形ABCD内的一个动点,满足∠AMD=90°,则点M到直线BC的距离的最小值为 .
18.(4分)若不等式>﹣x﹣的解都能使不等式(m﹣6)x<2m+1成立,则实数m的取值范围是 .
三、解答题:本大题共7小题,共计90分.解答应写出文字说明、证明过程或演算步骤.
19.(16分)(1)计算:|﹣3|+2cos60°﹣×﹣(﹣)0.
(2)先化简,再求值:(x+2+)÷,其中x=﹣1.
20.(12分)4月23日是“世界读书日”,甲、乙两个书店在这一天举行了购书优惠活动.
甲书店:所有书籍按标价8折出售;
乙书店:一次购书中标价总额不超过100元的按原价计费,超过100元后的部分打6折.
(1)以x(单位:元)表示标价总额,y(单位:元)表示应支付金额,分别就两家书店的优惠方式,求y关于x的函数解析式;
(2)“世界读书日”这一天,如何选择这两家书店去购书更省钱?
21.(12分)为助力新冠肺炎疫情后经济的复苏,天天快餐公司积极投入到复工复产中.现有A、B两家农副产品加工厂到该公司推销鸡腿,两家鸡腿的价格相同,品质相近.该公司决定通过检查质量来确定选购哪家的鸡腿.检察人员从两家分别抽取100个鸡腿,然后再从中随机各抽取10个,记录它们的质量(单位:克)如表:
A加工厂
74
75
75
75
73
77
78
72
76
75
B加工厂
78
74
78
73
74
75
74
74
75
75
(1)根据表中数据,求A加工厂的10个鸡腿质量的中位数、众数、平均数;
(2)估计B加工厂这100个鸡腿中,质量为75克的鸡腿有多少个?
(3)根据鸡腿质量的稳定性,该快餐公司应选购哪家加工厂的鸡腿?
22.(12分)如图,△ABC内接于⊙O,点D在⊙O外,∠ADC=90°,BD交⊙O于点E,交AC于点F,∠EAC=∠DCE,∠CEB=∠DCA,CD=6,AD=8.
(1)求证:AB∥CD;
(2)求证:CD是⊙O的切线;
(3)求tan∠ACB的值.
23.(12分)如图,在平面直角坐标系xOy中,一次函数的图象与反比例函数y=(k<0)的图象在第二象限交于A(﹣3,m),B(n,2)两点.
(1)当m=1时,求一次函数的解析式;
(2)若点E在x轴上,满足∠AEB=90°,且AE=2﹣m,求反比例函数的解析式.
24.(12分)如图,抛物线过点A(0,1)和C,顶点为D,直线AC与抛物线的对称轴BD的交点为B(,0),平行于y轴的直线EF与抛物线交于点E,与直线AC交于点F,点F的横坐标为,四边形BDEF为平行四边形.
(1)求点F的坐标及抛物线的解析式;
(2)若点P为抛物线上的动点,且在直线AC上方,当△PAB面积最大时,求点P的坐标及△PAB面积的最大值;
(3)在抛物线的对称轴上取一点Q,同时在抛物线上取一点R,使以AC为一边且以A,C,Q,R为顶点的四边形为平行四边形,求点Q和点R的坐标.
25.(14分)如图,在矩形ABCD中,对角线相交于点O,⊙M为△BCD的内切圆,切点分别为N,P,Q,DN=4,BN=6.
(1)求BC,CD;
(2)点H从点A出发,沿线段AD向点D以每秒3个单位长度的速度运动,当点H运动到点D时停止,过点H作HI∥BD交AC于点I,设运动时间为t秒.
①将△AHI沿AC翻折得△AH′I,是否存在时刻t,使点H′恰好落在边BC上?若存在,求t的值;若不存在,请说明理由;
②若点F为线段CD上的动点,当△OFH为正三角形时,求t的值.
2020年四川省绵阳市中考数学试卷
参考答案与试题解析
一、选择题:本大题共12小题,每小题3分,共36分.每小题只有一个选项符合题目要求.
1.(3分)﹣3的相反数是( )
A.﹣3 B.﹣ C. D.3
【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.
【解答】解:﹣3的相反数是3,
故选:D.
2.(3分)如图是以正方形的边长为直径,在正方形内画半圆得到的图形,则此图形的对称轴有( )
A.2条 B.4条 C.6条 D.8条
【分析】根据轴对称的性质即可画出对称轴进而可得此图形的对称轴的条数.
【解答】解:如图,
因为以正方形的边长为直径,在正方形内画半圆得到的图形,
所以此图形的对称轴有4条.
故选:B.
3.(3分)近年来,华为手机越来越受到消费者的青睐.截至2019年12月底,华为5G手机全球总发货量突破690万台.将690万用科学记数法表示为( )
A.0.69×107 B.69×105 C.6.9×105 D.6.9×106
【分析】绝对值大于10的数用科学记数法表示一般形式为a×10n,n为整数位数减1.
【解答】解:690万=6900000=6.9×106.
故选:D.
4.(3分)下列四个图形中,不能作为正方体的展开图的是( )
A. B.
C. D.
【分析】根据正方体的展开图的11种不同情况进行判断即可.
【解答】解:正方体展开图的11种情况可分为“1﹣4﹣1型”6种,“2﹣3﹣1型”3种,“2﹣2﹣2型”1种,“3﹣3型”1种,
因此选项D符合题意,
故选:D.
5.(3分)若有意义,则a的取值范围是( )
A.a≥1 B.a≤1 C.a≥0 D.a≤﹣1
【分析】直接利用二次根式有意义的条件分析得出答案.
【解答】解:若有意义,则a﹣1≥0,
解得:a≥1.
故选:A.
6.(3分)《九章算术》中记载“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?此问题中羊价为( )
A.160钱 B.155钱 C.150钱 D.145钱
【分析】设共有x人合伙买羊,羊价为y钱,根据“若每人出5钱,还差45钱;若每人出7钱,还差3钱”,即可得出关于x,y的二元一次方程组,解之即可得出结论.
【解答】解:设共有x人合伙买羊,羊价为y钱,
依题意,得:,
解得:.
故选:C.
7.(3分)如图,在四边形ABCD中,∠A=∠C=90°,DF∥BC,∠ABC的平分线BE交DF于点G,GH⊥DF,点E恰好为DH的中点,若AE=3,CD=2,则GH=( )
A.1 B.2 C.3 D.4
【分析】过E作EM⊥BC,交FD于点H,可得EH⊥GD,得到EH与GH平行,再由E为HD中点,得到HG=2EH,同时得到四边形HMCD为矩形,再由角平分线定理得到AE=ME,进而求出EH的长,得到HG的长.
【解答】解:过E作EM⊥BC,交FD于点H,
∵DF∥BC,
∴EH⊥DF,
∴EH∥HG,
∴=,
∵E为HD中点,
∴=,
∴=,即HG=2EH,
∴∠DHM=∠HMC=∠C=90°,
∴四边形HMCD为矩形,
∴HM=DC=2,
∵BE平分∠ABC,EA⊥AB,EM⊥BC,
∴EM=AE=3,
∴EH=EM﹣HM=3﹣2=1,
则HG=2EH=2.
故选:B.
8.(3分)将一个篮球和一个足球随机放入三个不同的篮子中,则恰有一个篮子为空的概率为( )
A. B. C. D.
【分析】根据题意画出树状图得出所有等可能的情况数,找出恰有一个篮子为空的情况数,然后根据概率公式即可得出答案.
【解答】解:三个不同的篮子分别用A、B、C表示,根据题意画图如下:
共有9种等可能的情况数,其中恰有一个篮子为空的有6种,
则恰有一个篮子为空的概率为=.
故选:A.
9.(3分)在螳螂的示意图中,AB∥DE,△ABC是等腰三角形,∠ABC=124°,∠CDE=72°,则∠ACD=( )
A.16° B.28° C.44° D.45°
【分析】延长ED,交AC于F,根据等腰三角形的性质得出∠A=∠ACB=28°,根据平行线的性质得出∠CFD=∠A=28°,
由三角形外角的性质即可求得∠ACD的度数.
【解答】解:延长ED,交AC于F,
∵△ABC是等腰三角形,∠ABC=124°,
∴∠A=∠ACB=28°,
∵AB∥DE,
∴∠CFD=∠A=28°,
∵∠CDE=∠CFD+∠ACD=72°,
∴∠ACD=72°﹣28°=44°,
故选:C.
10.(3分)甲、乙二人同驾一辆车出游,各匀速行驶一半路程,共用3小时,到达目的地后,甲对乙说:“我用你所花的时间,可以行驶180km”,乙对甲说:“我用你所花的时间,只能行驶80km”.从他们的交谈中可以判断,乙驾车的时长为( )
A.1.2小时 B.1.6小时 C.1.8小时 D.2小时
【分析】设乙驾车时长为x小时,则乙驾车时长为(3﹣x)小时,根据两人对话可知:甲的速度为km/h,乙的速度为km/h,根据“各匀速行驶一半路程”列出方程求解即可.
【解答】解:设乙驾车时长为x小时,则乙驾车时长为(3﹣x)小时,
根据两人对话可知:甲的速度为km/h,乙的速度为km/h,
根据题意得:,
解得:x1=1.8或x2=9,
经检验:x1=1.8或x2=9是原方程的解,
x2=9不合题意,舍去,
故选:C.
11.(3分)三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为( )
A.4米 B.5米 C.2米 D.7米
【分析】根据题意,可以画出相应的抛物线,然后即可得到大孔所在抛物线解析式,再求出顶点为A的小孔所在抛物线的解析式,将x=﹣10代入可求解.
【解答】解:如图,建立如图所示的平面直角坐标系,由题意可得MN=4,EF=14,BC=10,DO=,
设大孔所在抛物线解析式为y=ax2+,
∵BC=10,
∴点B(﹣5,0),
∴0=a×(﹣5)2+,
∴a=﹣,
∴大孔所在抛物线解析式为y=﹣x2+,
设点A(b,0),则设顶点为A的小孔所在抛物线的解析式为y=m(x﹣b)2,
∵EF=14,
∴点E的横坐标为﹣7,
∴点E坐标为(﹣7,﹣),
∴﹣=m(x﹣b)2,
∴x1=+b,x2=﹣+b,
∴MN=4,
∴|+b﹣(﹣+b)|=4
∴m=﹣,
∴顶点为A的小孔所在抛物线的解析式为y=﹣(x﹣b)2,
∵大孔水面宽度为20米,
∴当x=﹣10时,y=﹣,
∴﹣=﹣(x﹣b)2,
∴x1=+b,x2=﹣+b,
∴单个小孔的水面宽度=|(+b)﹣(﹣+b)|=5(米),
故选:B.
12.(3分)如图,在四边形ABCD中,AD∥BC,∠ABC=90°,AB=2,AD=2,将△ABC绕点C顺时针方向旋转后得△A′B′C,当A′B′恰好经过点D时,△B′CD为等腰三角形,若BB′=2,则AA′=( )
A. B.2 C. D.
【分析】过D作DE⊥BC于E,则∠DEC=∠DEB=90°,根据矩形的想知道的BE=AD=2,DE=AB=2,根据旋转的性质得到∠DB′C=∠ABC=90°,B′C=BC,A′C=AC,∠A′CA=∠B′CB,推出△B′CD为等腰直角三角形,得到CD=B′C,设B′C=BC=x,则CD=x,CE=x﹣2,根据勾股定理即可得到结论.
【解答】解:过D作DE⊥BC于E,
则∠DEC=∠DEB=90°,
∵AD∥BC,∠ABC=90°,
∴∠DAB=∠ABC=90°,
∴四边形ABED是矩形,
∴BE=AD=2,DE=AB=2,
∵将△ABC绕点C顺时针方向旋转后得△A′B′C,
∴∠DB′C=∠ABC=90°,B′C=BC,A′C=AC,∠A′CA=∠B′CB,
∴△A′CA∽△B′CB,
∴=,
∵△B′CD为等腰三角形,
∴△B′CD为等腰直角三角形,
∴CD=B′C,
设B′C=BC=x,则CD=x,CE=x﹣2,
∵CD2=CE2+DE2,
∴(x)2=(x﹣2)2+(2)2,
∴x=4(负值舍去),
∴BC=4,
∴AC==2,
∴=,
∴A′A=,
故选:A.
二、填空题:本大题共6小题,每小题4分,共24分.将答案填写在答题卡相应的横线上.
13.(4分)因式分解:x3y﹣4xy3= xy(x+2y)(x﹣2y) .
【分析】先提取公因式xy,再对余下的多项式利用平方差公式继续分解.
【解答】解:x3y﹣4xy3,
=xy(x2﹣4y2),
=xy(x+2y)(x﹣2y).
故答案为:xy(x+2y)(x﹣2y).
14.(4分)平面直角坐标系中,将点A(﹣1,2)先向左平移2个单位,再向上平移1个单位后得到的点A1的坐标为 (﹣3,3) .
【分析】根据在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.)即可得结论.
【解答】解:∵将点A(﹣1,2)先向左平移2个单位,横坐标﹣2,
再向上平移1个单位纵坐标+1,
∴平移后得到的点A1的坐标为:(﹣3,3).
故答案为:(﹣3,3).
15.(4分)若多项式xy|m﹣n|+(n﹣2)x2y2+1是关于x,y的三次多项式,则mn= 0或8 .
【分析】直接利用多项式的次数确定方法得出答案.
【解答】解:∵多项式xy|m﹣n|+(n﹣2)x2y2+1是关于x,y的三次多项式,
∴n﹣2=0,1+|m﹣n|=3,
∴n=2,|m﹣n|=2,
∴m﹣n=2或n﹣m=2,
∴m=4或m=0,
∴mn=0或8.
故答案为:0或8.
16.(4分)我市认真落实国家“精准扶贫”政策,计划在对口帮扶的贫困县种植甲、乙两种火龙果共100亩,根据市场调查,甲、乙两种火龙果每亩的种植成本分别为0.9万元、1.1万元,每亩的销售额分别为2万元、2.5万元,如果要求种植成本不少于98万元,但不超过100万元,且所有火龙果能全部售出,则该县在此项目中获得的最大利润是 125 万元.(利润=销售额﹣种植成本)
【分析】设甲种火龙果种植x亩,乙钟火龙果种植(100﹣x)亩,此项目获得利润w,根据题意列出不等式求出x的范围,然后根据题意列出w与x的函数关系即可求出答案.
【解答】解:设甲种火龙果种植x亩,乙钟火龙果种植(100﹣x)亩,此项目获得利润w,
甲、乙两种火龙果每亩利润为1.1万元,1.4万元,
由题意可知:,
解得:50≤x≤60,
此项目获得利润w=1.1x+1.4(100﹣x)=140﹣0.3x,
当x=50时,
w的最大值为140﹣15=125万元.
17.(4分)如图,四边形ABCD中,AB∥CD,∠ABC=60°,AD=BC=CD=4,点M是四边形ABCD内的一个动点,满足∠AMD=90°,则点M到直线BC的距离的最小值为 3﹣2 .
【分析】取AD的中点O,连接OM,过点M作ME⊥BC交BC的延长线于E,点点O作OF⊥BC于F,交CD于G,则OM+ME≥OF.求出OM,OF即可解决问题.
【解答】解:取AD的中点O,连接OM,过点M作ME⊥BC交BC的延长线于E,点点O作OF⊥BC于F,交CD于G,则OM+ME≥OF.
∵∠AMD=90°,AD=4,OA=OD,
∴OM=AD=2,
∵AB∥CD,
∴∠GCF=∠B=60°,
∴∠DGO=∠CGE=30°,
∵AD=BC,
∴∠DAB=∠B=60°,
∴∠ADC=∠BCD=120°,
∴∠DOG=30°=∠DGO,
∴DG=DO=2,
∵CD=4,
∴CG=2,
∴OG=2,GF=,OF=3,
∴ME≥OF﹣OM=3﹣2,
∴当O,M,E共线时,ME的值最小,最小值为3﹣2.
18.(4分)若不等式>﹣x﹣的解都能使不等式(m﹣6)x<2m+1成立,则实数m的取值范围是 ≤m≤6 .
【分析】解不等式>﹣x﹣得x>﹣4,据此知x>﹣4都能使不等式(m﹣6)x<2m+1成立,再分m﹣6=0和m﹣6≠0两种情况分别求解.
【解答】解:解不等式>﹣x﹣得x>﹣4,
∵x>﹣4都能使不等式(m﹣6)x<2m+1成立,
①当m﹣6=0,即m=6时,则x>﹣4都能使0•x<13恒成立;
②当m﹣6≠0,则不等式(m﹣6)x<2m+1的解要改变方向,
∴m﹣6<0,即m<6,
∴不等式(m﹣6)x<2m+1的解集为x>,
∵x>﹣4都能使x>成立,
∴﹣4≥,
∴﹣4m+24≤2m+1,
∴m≥,
综上所述,m的取值范围是≤m≤6.
故答案为:≤m≤6.
三、解答题:本大题共7小题,共计90分.解答应写出文字说明、证明过程或演算步骤.
19.(16分)(1)计算:|﹣3|+2cos60°﹣×﹣(﹣)0.
(2)先化简,再求值:(x+2+)÷,其中x=﹣1.
【分析】(1)先去绝对值符号、代入三角函数值、化简二次根式、计算零指数幂,再计算乘法,最后计算加减可得;
(2)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.
【解答】解:(1)原式=3﹣+2×﹣×2﹣1
=3﹣+﹣2﹣1
=0;
(2)原式=(+)÷
=•
=,
当x=﹣1时,
原式=
=
=1﹣.
20.(12分)4月23日是“世界读书日”,甲、乙两个书店在这一天举行了购书优惠活动.
甲书店:所有书籍按标价8折出售;
乙书店:一次购书中标价总额不超过100元的按原价计费,超过100元后的部分打6折.
(1)以x(单位:元)表示标价总额,y(单位:元)表示应支付金额,分别就两家书店的优惠方式,求y关于x的函数解析式;
(2)“世界读书日”这一天,如何选择这两家书店去购书更省钱?
【分析】(1)根据题意给出的等量关系即可求出答案.
(2)先求出两书店所需费用相同时的书本数量,从而可判断哪家书店省钱.
【解答】解:(1)甲书店:y=0.8x,
乙书店:y=.
(2)令0.8x=0.6x+40,
解得:x=200,
当x<200时,选择甲书店更省钱,
当x=200,甲乙书店所需费用相同,
当x>200,选择乙书店更省钱.
21.(12分)为助力新冠肺炎疫情后经济的复苏,天天快餐公司积极投入到复工复产中.现有A、B两家农副产品加工厂到该公司推销鸡腿,两家鸡腿的价格相同,品质相近.该公司决定通过检查质量来确定选购哪家的鸡腿.检察人员从两家分别抽取100个鸡腿,然后再从中随机各抽取10个,记录它们的质量(单位:克)如表:
A加工厂
74
75
75
75
73
77
78
72
76
75
B加工厂
78
74
78
73
74
75
74
74
75
75
(1)根据表中数据,求A加工厂的10个鸡腿质量的中位数、众数、平均数;
(2)估计B加工厂这100个鸡腿中,质量为75克的鸡腿有多少个?
(3)根据鸡腿质量的稳定性,该快餐公司应选购哪家加工厂的鸡腿?
【分析】(1)根据中位数、众数和平均数的计算公式分别进行解答即可;
(2)用总数乘以质量为75克的鸡腿所占的百分比即可;
(3)根据方差的定义,方差越小数据越稳定即可得出答案.
【解答】解:(1)把这些数从小到大排列,最中间的数是第5和第6个数的平均数,
则中位数是=75(克);
因为75出现了4次,出现的次数最多,
所以众数是75克;
平均数是:(74+75+75+75+73+77+78+72+76+75)=75(克);
(2)根据题意得:
100×=30(个),
答:质量为75克的鸡腿有30个;
(3)选B加工厂的鸡腿.
∵A、B平均值一样,B的方差比A的方差小,B更稳定,
∴选B加工厂的鸡腿.
22.(12分)如图,△ABC内接于⊙O,点D在⊙O外,∠ADC=90°,BD交⊙O于点E,交AC于点F,∠EAC=∠DCE,∠CEB=∠DCA,CD=6,AD=8.
(1)求证:AB∥CD;
(2)求证:CD是⊙O的切线;
(3)求tan∠ACB的值.
【分析】(1)由圆周角定理与已知得∠BAC=∠DCA,即可得出结论;
(2)连接EO并延长交⊙O于G,连接CG,则EG为⊙O的直径,∠ECG=90°,证明∠DCE=∠EGC=∠OCG,得出∠DCE+∠OCE=90°,即可得出结论;
(3)由三角函数定义求出cos∠ACD=,证出∠ABC=∠ACD=∠CAB,求出BC=AC=10,AB=12,过点B作BG⊥AC于C,设GC=x,则AG=10﹣x,由勾股定理得出方程,解方程得GC=,由勾股定理求出BG=,由三角函数定义即可得答案.
【解答】(1)证明:∵∠BAC=∠CEB,∠CEB=∠DCA,
∴∠BAC=∠DCA,
∴AB∥CD;
(2)证明:连接EO并延长交⊙O于G,连接CG,如图1所示:
则EG为⊙O的直径,
∴∠ECG=90°,
∵OC=OG,
∴∠OCG=∠EGC,
∵∠EAC=∠EGC,∠EAC=∠DCE,
∴∠DCE=∠EGC=∠OCG,
∵∠OCG+∠OCE=∠ECG=90°,
∴∠DCE+∠OCE=90°,即∠DCO=90°,
∵OC是⊙O的半径,
∴CD是⊙O的切线;
(3)解:在Rt△ADC中,由勾股定理得:AC===10,
∴cos∠ACD===,
∵CD是⊙O的切线,AB∥CD,
∴∠ABC=∠ACD=∠CAB,
∴BC=AC=10,AB=2BC•cos∠ABC=2×10×=12,
过点B作BG⊥AC于C,如图2所示:
设GC=x,则AG=10﹣x,
由勾股定理得:AB2﹣AG2=BG2=BC2﹣GC2,
即:122﹣(10﹣x)2=102﹣x2,
解得:x=,
∴GC=,
∴BG===,
∴tan∠ACB===.
23.(12分)如图,在平面直角坐标系xOy中,一次函数的图象与反比例函数y=(k<0)的图象在第二象限交于A(﹣3,m),B(n,2)两点.
(1)当m=1时,求一次函数的解析式;
(2)若点E在x轴上,满足∠AEB=90°,且AE=2﹣m,求反比例函数的解析式.
【分析】(1)将点A坐标代入反比例函数解析式中求出k,进而得出点B坐标,最后用待定系数法求出直线AB的解析式;
(2)先判断出BF=AE,进而得出△AEG≌Rt△BFG(AAS),得出AG=BG,EG=FG,即BE=BG+EG=AG+FG=AF,再求出m=﹣n,进而得出BF=2+n,MN=n+3,即BE=AF=n+3,再判断出△AME∽△ENB,得出==,得出ME=BN=,最后用勾股定理求出m,即可得出结论.
【解答】解:(1)当m=1时,点A(﹣3,1),
∵点A在反比例函数y=的图象上,
∴k=﹣3×1=﹣3,
∴反比例函数的解析式为y=﹣;
∵点B(n,2)在反比例函数y=﹣图象上,
∴2n=﹣3,
∴n=﹣,
设直线AB的解析式为y=ax+b,则,
∴,
∴直线AB的解析式为y=x+3;
(2)如图,过点A作AM⊥x轴于M,过点B作BN⊥x轴于N,过点A作AF⊥BN于F,交BE于G,
则四边形AMNF是矩形,
∴FN=AM,AF=MN,
∵A(﹣3,m),B(n,2),
∴BF=2﹣m,
∵AE=2﹣m,
∴BF=AE,
在△AEG和△BFG中,,
∴△AEG≌Rt△BFG(AAS),
∴AG=BG,EG=FG,
∴BE=BG+EG=AG+FG=AF,
∵点A(﹣3,m),B(n,2)在反比例函数y=的图象上,
∴k=﹣3m=2n,
∴m=﹣n,
∴BF=BN﹣FN=BN﹣AM=2﹣m=2+n,MN=n﹣(﹣3)=n+3,
∴BE=AF=n+3,
∵∠AEM+∠MAE=90°,∠AEM+∠BEN=90°,
∴∠MAE=∠NEB,
∵∠AME=∠ENB=90°,
∴△AME∽△ENB,
∴====,
∴ME=BN=,
在Rt△AME中,AM=m,AE=2﹣m,根据勾股定理得,AM2+ME2=AE2,
∴m2+()2=(2﹣m)2,
∴m=,
∴k=﹣3m=﹣,
∴反比例函数的解析式为y=﹣.
24.(12分)如图,抛物线过点A(0,1)和C,顶点为D,直线AC与抛物线的对称轴BD的交点为B(,0),平行于y轴的直线EF与抛物线交于点E,与直线AC交于点F,点F的横坐标为,四边形BDEF为平行四边形.
(1)求点F的坐标及抛物线的解析式;
(2)若点P为抛物线上的动点,且在直线AC上方,当△PAB面积最大时,求点P的坐标及△PAB面积的最大值;
(3)在抛物线的对称轴上取一点Q,同时在抛物线上取一点R,使以AC为一边且以A,C,Q,R为顶点的四边形为平行四边形,求点Q和点R的坐标.
【分析】(1)由待定系数法求出直线AB的解析式为y=﹣x+1,求出F点的坐标,由平行四边形的性质得出﹣3a+1=a﹣8a+1﹣(﹣),求出a的值,则可得出答案;
(2)设P(n,﹣n2+2n+1),作PP'⊥x轴交AC于点P',则P'(n,﹣n+1),得出PP'=﹣n2+n,由二次函数的性质可得出答案;
(3)联立直线AC和抛物线解析式求出C(,﹣),设Q(,m),分两种情况:①当AQ为对角线时,②当AR为对角线时,分别求出点Q和R的坐标即可.
【解答】解:(1)设抛物线的解析式为y=ax2+bx+c(a≠0),
∵A(0,1),B(,0),
设直线AB的解析式为y=kx+m,
∴,
解得,
∴直线AB的解析式为y=﹣x+1,
∵点F的横坐标为,
∴F点纵坐标为﹣+1=﹣,
∴F点的坐标为(,﹣),
又∵点A在抛物线上,
∴c=1,
对称轴为:x=﹣,
∴b=﹣2a,
∴解析式化为:y=ax2﹣2ax+1,
∵四边形DBFE为平行四边形.
∴BD=EF,
∴﹣3a+1=a﹣8a+1﹣(﹣),
解得a=﹣1,
∴抛物线的解析式为y=﹣x2+2x+1;
(2)设P(n,﹣n2+2n+1),作PP'⊥x轴交AC于点P',
则P'(n,﹣n+1),
∴PP'=﹣n2+n,
S△ABP=OB•PP'=﹣n=﹣+,
∴当n=时,△ABP的面积最大为,此时P(,).
(3)∵,
∴x=0或x=,
∴C(,﹣),
设Q(,m),
①当AQ为对角线时,
∴R(﹣),
∵R在抛物线y=+4上,
∴m+=﹣+4,
解得m=﹣,
∴Q,R;
②当AR为对角线时,
∴R(),
∵R在抛物线y=+4上,
∴m﹣+4,
解得m=﹣10,
∴Q(,﹣10),R().
综上所述,Q,R;或Q(,﹣10),R().
25.(14分)如图,在矩形ABCD中,对角线相交于点O,⊙M为△BCD的内切圆,切点分别为N,P,Q,DN=4,BN=6.
(1)求BC,CD;
(2)点H从点A出发,沿线段AD向点D以每秒3个单位长度的速度运动,当点H运动到点D时停止,过点H作HI∥BD交AC于点I,设运动时间为t秒.
①将△AHI沿AC翻折得△AH′I,是否存在时刻t,使点H′恰好落在边BC上?若存在,求t的值;若不存在,请说明理由;
②若点F为线段CD上的动点,当△OFH为正三角形时,求t的值.
【分析】(1)由切线长定理得出BP=BN=6,DQ=DN=4,CP=CQ,BD=BN+DN=10,设CP=CQ=a,由勾股定理得出BC2+CD2=BD2,得出方程,解方程即可;
(2)①由折叠的性质得∠AH'I=∠AHI,AH'=AH=3t,证明△AIH'∽△AH'C,则AH'2=AI×AC,证△AIH∽△AOD,求出AI=t,得出(3t)2=t×10,解方程即可;
②作PH⊥OH于H,交OF的延长线于P,作OM⊥AD于M,PN⊥AD于N,证出FH=FP=OF,HP=OH,DN=DM=4,证明△OMH∽△HNP,求出HN=OM=3,则DH=HN﹣DN=3﹣4,得出AH=AD﹣DH=12﹣3,即可得出答案.
【解答】解:(1)∵⊙M为△BCD的内切圆,切点分别为N,P,Q,DN=4,BN=6,
∴BP=BN=6,DQ=DN=4,CP=CQ,BD=BN+DN=10,
设CP=CQ=a,则BC=6+a,CD=4+a,
∵四边形ABCD是矩形,
∴∠BCD=90°,
∴BC2+CD2=BD2,即(6+a)2+(4+a)2=102,
解得:a=2,
∴BC=6+2=8,CD=4+2=6;
(2)①存在时刻t=s,使点H′恰好落在边BC上;理由如下:
如图1所示:
由折叠的性质得:∠AH'I=∠AHI,AH'=AH=3t,
∵四边形ABCD是矩形,
∴AD=BC=8,AD∥BC,∠BCD=90°,OA=OC=AC,OB=OD=BD,AC=BD,
∴AC=BD===10,OA=OD=5,
∴∠ADO=∠OAD,
∵HI∥BD,
∴∠AHI=∠ADO,
∴∠AH'I=∠AHI=∠ADO=∠OAD=∠ACH',
∴△AIH'∽△AH'C,
∴=,
∴AH'2=AI×AC,
∵HI∥BD,
∴△AIH∽△AOD,
∴=,即=,
解得:AI=t,
∴(3t)2=t×10,
解得:t=,
即存在时刻t=s,使点H′恰好落在边BC上;
②作PH⊥OH于H,交OF的延长线于P,作OM⊥AD于M,PN⊥AD于N,如图2所示:
则OM∥CD∥PN,∠OMH=∠HNP=90°,OM是△ACD的中位线,
∴OM=CD=3,
∵△OFH是等边三角形,
∴OF=FH,∠OHF=∠HOF=60°,
∴∠FHP=∠HPO=30°,
∴FH=FP=OF,HP=OH,
∴DF是梯形OMNP的中位线,
∴DN=DM=4,
∵∠MHO+∠MOH=∠MHO+∠NHP=90°,
∴∠MOH=∠NHP,
∴△OMH∽△HNP,
∴==,
∴HN=OM=3,
∴DH=HN﹣DN=3﹣4,
∴AH=AD﹣DH=12﹣3,
∴t==4﹣,
即当△OFH为正三角形时,t的值为(4﹣)s.
一、选择题:本大题共12小题,每小题3分,共36分.每小题只有一个选项符合题目要求.
1.(3分)﹣3的相反数是( )
A.﹣3 B.﹣ C. D.3
2.(3分)如图是以正方形的边长为直径,在正方形内画半圆得到的图形,则此图形的对称轴有( )
A.2条 B.4条 C.6条 D.8条
3.(3分)近年来,华为手机越来越受到消费者的青睐.截至2019年12月底,华为5G手机全球总发货量突破690万台.将690万用科学记数法表示为( )
A.0.69×107 B.69×105 C.6.9×105 D.6.9×106
4.(3分)下列四个图形中,不能作为正方体的展开图的是( )
A. B.
C. D.
5.(3分)若有意义,则a的取值范围是( )
A.a≥1 B.a≤1 C.a≥0 D.a≤﹣1
6.(3分)《九章算术》中记载“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?此问题中羊价为( )
A.160钱 B.155钱 C.150钱 D.145钱
7.(3分)如图,在四边形ABCD中,∠A=∠C=90°,DF∥BC,∠ABC的平分线BE交DF于点G,GH⊥DF,点E恰好为DH的中点,若AE=3,CD=2,则GH=( )
A.1 B.2 C.3 D.4
8.(3分)将一个篮球和一个足球随机放入三个不同的篮子中,则恰有一个篮子为空的概率为( )
A. B. C. D.
9.(3分)在螳螂的示意图中,AB∥DE,△ABC是等腰三角形,∠ABC=124°,∠CDE=72°,则∠ACD=( )
A.16° B.28° C.44° D.45°
10.(3分)甲、乙二人同驾一辆车出游,各匀速行驶一半路程,共用3小时,到达目的地后,甲对乙说:“我用你所花的时间,可以行驶180km”,乙对甲说:“我用你所花的时间,只能行驶80km”.从他们的交谈中可以判断,乙驾车的时长为( )
A.1.2小时 B.1.6小时 C.1.8小时 D.2小时
11.(3分)三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为( )
A.4米 B.5米 C.2米 D.7米
12.(3分)如图,在四边形ABCD中,AD∥BC,∠ABC=90°,AB=2,AD=2,将△ABC绕点C顺时针方向旋转后得△A′B′C,当A′B′恰好经过点D时,△B′CD为等腰三角形,若BB′=2,则AA′=( )
A. B.2 C. D.
二、填空题:本大题共6小题,每小题4分,共24分.将答案填写在答题卡相应的横线上.
13.(4分)因式分解:x3y﹣4xy3= .
14.(4分)平面直角坐标系中,将点A(﹣1,2)先向左平移2个单位,再向上平移1个单位后得到的点A1的坐标为 .
15.(4分)若多项式xy|m﹣n|+(n﹣2)x2y2+1是关于x,y的三次多项式,则mn= .
16.(4分)我市认真落实国家“精准扶贫”政策,计划在对口帮扶的贫困县种植甲、乙两种火龙果共100亩,根据市场调查,甲、乙两种火龙果每亩的种植成本分别为0.9万元、1.1万元,每亩的销售额分别为2万元、2.5万元,如果要求种植成本不少于98万元,但不超过100万元,且所有火龙果能全部售出,则该县在此项目中获得的最大利润是 万元.(利润=销售额﹣种植成本)
17.(4分)如图,四边形ABCD中,AB∥CD,∠ABC=60°,AD=BC=CD=4,点M是四边形ABCD内的一个动点,满足∠AMD=90°,则点M到直线BC的距离的最小值为 .
18.(4分)若不等式>﹣x﹣的解都能使不等式(m﹣6)x<2m+1成立,则实数m的取值范围是 .
三、解答题:本大题共7小题,共计90分.解答应写出文字说明、证明过程或演算步骤.
19.(16分)(1)计算:|﹣3|+2cos60°﹣×﹣(﹣)0.
(2)先化简,再求值:(x+2+)÷,其中x=﹣1.
20.(12分)4月23日是“世界读书日”,甲、乙两个书店在这一天举行了购书优惠活动.
甲书店:所有书籍按标价8折出售;
乙书店:一次购书中标价总额不超过100元的按原价计费,超过100元后的部分打6折.
(1)以x(单位:元)表示标价总额,y(单位:元)表示应支付金额,分别就两家书店的优惠方式,求y关于x的函数解析式;
(2)“世界读书日”这一天,如何选择这两家书店去购书更省钱?
21.(12分)为助力新冠肺炎疫情后经济的复苏,天天快餐公司积极投入到复工复产中.现有A、B两家农副产品加工厂到该公司推销鸡腿,两家鸡腿的价格相同,品质相近.该公司决定通过检查质量来确定选购哪家的鸡腿.检察人员从两家分别抽取100个鸡腿,然后再从中随机各抽取10个,记录它们的质量(单位:克)如表:
A加工厂
74
75
75
75
73
77
78
72
76
75
B加工厂
78
74
78
73
74
75
74
74
75
75
(1)根据表中数据,求A加工厂的10个鸡腿质量的中位数、众数、平均数;
(2)估计B加工厂这100个鸡腿中,质量为75克的鸡腿有多少个?
(3)根据鸡腿质量的稳定性,该快餐公司应选购哪家加工厂的鸡腿?
22.(12分)如图,△ABC内接于⊙O,点D在⊙O外,∠ADC=90°,BD交⊙O于点E,交AC于点F,∠EAC=∠DCE,∠CEB=∠DCA,CD=6,AD=8.
(1)求证:AB∥CD;
(2)求证:CD是⊙O的切线;
(3)求tan∠ACB的值.
23.(12分)如图,在平面直角坐标系xOy中,一次函数的图象与反比例函数y=(k<0)的图象在第二象限交于A(﹣3,m),B(n,2)两点.
(1)当m=1时,求一次函数的解析式;
(2)若点E在x轴上,满足∠AEB=90°,且AE=2﹣m,求反比例函数的解析式.
24.(12分)如图,抛物线过点A(0,1)和C,顶点为D,直线AC与抛物线的对称轴BD的交点为B(,0),平行于y轴的直线EF与抛物线交于点E,与直线AC交于点F,点F的横坐标为,四边形BDEF为平行四边形.
(1)求点F的坐标及抛物线的解析式;
(2)若点P为抛物线上的动点,且在直线AC上方,当△PAB面积最大时,求点P的坐标及△PAB面积的最大值;
(3)在抛物线的对称轴上取一点Q,同时在抛物线上取一点R,使以AC为一边且以A,C,Q,R为顶点的四边形为平行四边形,求点Q和点R的坐标.
25.(14分)如图,在矩形ABCD中,对角线相交于点O,⊙M为△BCD的内切圆,切点分别为N,P,Q,DN=4,BN=6.
(1)求BC,CD;
(2)点H从点A出发,沿线段AD向点D以每秒3个单位长度的速度运动,当点H运动到点D时停止,过点H作HI∥BD交AC于点I,设运动时间为t秒.
①将△AHI沿AC翻折得△AH′I,是否存在时刻t,使点H′恰好落在边BC上?若存在,求t的值;若不存在,请说明理由;
②若点F为线段CD上的动点,当△OFH为正三角形时,求t的值.
2020年四川省绵阳市中考数学试卷
参考答案与试题解析
一、选择题:本大题共12小题,每小题3分,共36分.每小题只有一个选项符合题目要求.
1.(3分)﹣3的相反数是( )
A.﹣3 B.﹣ C. D.3
【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.
【解答】解:﹣3的相反数是3,
故选:D.
2.(3分)如图是以正方形的边长为直径,在正方形内画半圆得到的图形,则此图形的对称轴有( )
A.2条 B.4条 C.6条 D.8条
【分析】根据轴对称的性质即可画出对称轴进而可得此图形的对称轴的条数.
【解答】解:如图,
因为以正方形的边长为直径,在正方形内画半圆得到的图形,
所以此图形的对称轴有4条.
故选:B.
3.(3分)近年来,华为手机越来越受到消费者的青睐.截至2019年12月底,华为5G手机全球总发货量突破690万台.将690万用科学记数法表示为( )
A.0.69×107 B.69×105 C.6.9×105 D.6.9×106
【分析】绝对值大于10的数用科学记数法表示一般形式为a×10n,n为整数位数减1.
【解答】解:690万=6900000=6.9×106.
故选:D.
4.(3分)下列四个图形中,不能作为正方体的展开图的是( )
A. B.
C. D.
【分析】根据正方体的展开图的11种不同情况进行判断即可.
【解答】解:正方体展开图的11种情况可分为“1﹣4﹣1型”6种,“2﹣3﹣1型”3种,“2﹣2﹣2型”1种,“3﹣3型”1种,
因此选项D符合题意,
故选:D.
5.(3分)若有意义,则a的取值范围是( )
A.a≥1 B.a≤1 C.a≥0 D.a≤﹣1
【分析】直接利用二次根式有意义的条件分析得出答案.
【解答】解:若有意义,则a﹣1≥0,
解得:a≥1.
故选:A.
6.(3分)《九章算术》中记载“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?此问题中羊价为( )
A.160钱 B.155钱 C.150钱 D.145钱
【分析】设共有x人合伙买羊,羊价为y钱,根据“若每人出5钱,还差45钱;若每人出7钱,还差3钱”,即可得出关于x,y的二元一次方程组,解之即可得出结论.
【解答】解:设共有x人合伙买羊,羊价为y钱,
依题意,得:,
解得:.
故选:C.
7.(3分)如图,在四边形ABCD中,∠A=∠C=90°,DF∥BC,∠ABC的平分线BE交DF于点G,GH⊥DF,点E恰好为DH的中点,若AE=3,CD=2,则GH=( )
A.1 B.2 C.3 D.4
【分析】过E作EM⊥BC,交FD于点H,可得EH⊥GD,得到EH与GH平行,再由E为HD中点,得到HG=2EH,同时得到四边形HMCD为矩形,再由角平分线定理得到AE=ME,进而求出EH的长,得到HG的长.
【解答】解:过E作EM⊥BC,交FD于点H,
∵DF∥BC,
∴EH⊥DF,
∴EH∥HG,
∴=,
∵E为HD中点,
∴=,
∴=,即HG=2EH,
∴∠DHM=∠HMC=∠C=90°,
∴四边形HMCD为矩形,
∴HM=DC=2,
∵BE平分∠ABC,EA⊥AB,EM⊥BC,
∴EM=AE=3,
∴EH=EM﹣HM=3﹣2=1,
则HG=2EH=2.
故选:B.
8.(3分)将一个篮球和一个足球随机放入三个不同的篮子中,则恰有一个篮子为空的概率为( )
A. B. C. D.
【分析】根据题意画出树状图得出所有等可能的情况数,找出恰有一个篮子为空的情况数,然后根据概率公式即可得出答案.
【解答】解:三个不同的篮子分别用A、B、C表示,根据题意画图如下:
共有9种等可能的情况数,其中恰有一个篮子为空的有6种,
则恰有一个篮子为空的概率为=.
故选:A.
9.(3分)在螳螂的示意图中,AB∥DE,△ABC是等腰三角形,∠ABC=124°,∠CDE=72°,则∠ACD=( )
A.16° B.28° C.44° D.45°
【分析】延长ED,交AC于F,根据等腰三角形的性质得出∠A=∠ACB=28°,根据平行线的性质得出∠CFD=∠A=28°,
由三角形外角的性质即可求得∠ACD的度数.
【解答】解:延长ED,交AC于F,
∵△ABC是等腰三角形,∠ABC=124°,
∴∠A=∠ACB=28°,
∵AB∥DE,
∴∠CFD=∠A=28°,
∵∠CDE=∠CFD+∠ACD=72°,
∴∠ACD=72°﹣28°=44°,
故选:C.
10.(3分)甲、乙二人同驾一辆车出游,各匀速行驶一半路程,共用3小时,到达目的地后,甲对乙说:“我用你所花的时间,可以行驶180km”,乙对甲说:“我用你所花的时间,只能行驶80km”.从他们的交谈中可以判断,乙驾车的时长为( )
A.1.2小时 B.1.6小时 C.1.8小时 D.2小时
【分析】设乙驾车时长为x小时,则乙驾车时长为(3﹣x)小时,根据两人对话可知:甲的速度为km/h,乙的速度为km/h,根据“各匀速行驶一半路程”列出方程求解即可.
【解答】解:设乙驾车时长为x小时,则乙驾车时长为(3﹣x)小时,
根据两人对话可知:甲的速度为km/h,乙的速度为km/h,
根据题意得:,
解得:x1=1.8或x2=9,
经检验:x1=1.8或x2=9是原方程的解,
x2=9不合题意,舍去,
故选:C.
11.(3分)三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为( )
A.4米 B.5米 C.2米 D.7米
【分析】根据题意,可以画出相应的抛物线,然后即可得到大孔所在抛物线解析式,再求出顶点为A的小孔所在抛物线的解析式,将x=﹣10代入可求解.
【解答】解:如图,建立如图所示的平面直角坐标系,由题意可得MN=4,EF=14,BC=10,DO=,
设大孔所在抛物线解析式为y=ax2+,
∵BC=10,
∴点B(﹣5,0),
∴0=a×(﹣5)2+,
∴a=﹣,
∴大孔所在抛物线解析式为y=﹣x2+,
设点A(b,0),则设顶点为A的小孔所在抛物线的解析式为y=m(x﹣b)2,
∵EF=14,
∴点E的横坐标为﹣7,
∴点E坐标为(﹣7,﹣),
∴﹣=m(x﹣b)2,
∴x1=+b,x2=﹣+b,
∴MN=4,
∴|+b﹣(﹣+b)|=4
∴m=﹣,
∴顶点为A的小孔所在抛物线的解析式为y=﹣(x﹣b)2,
∵大孔水面宽度为20米,
∴当x=﹣10时,y=﹣,
∴﹣=﹣(x﹣b)2,
∴x1=+b,x2=﹣+b,
∴单个小孔的水面宽度=|(+b)﹣(﹣+b)|=5(米),
故选:B.
12.(3分)如图,在四边形ABCD中,AD∥BC,∠ABC=90°,AB=2,AD=2,将△ABC绕点C顺时针方向旋转后得△A′B′C,当A′B′恰好经过点D时,△B′CD为等腰三角形,若BB′=2,则AA′=( )
A. B.2 C. D.
【分析】过D作DE⊥BC于E,则∠DEC=∠DEB=90°,根据矩形的想知道的BE=AD=2,DE=AB=2,根据旋转的性质得到∠DB′C=∠ABC=90°,B′C=BC,A′C=AC,∠A′CA=∠B′CB,推出△B′CD为等腰直角三角形,得到CD=B′C,设B′C=BC=x,则CD=x,CE=x﹣2,根据勾股定理即可得到结论.
【解答】解:过D作DE⊥BC于E,
则∠DEC=∠DEB=90°,
∵AD∥BC,∠ABC=90°,
∴∠DAB=∠ABC=90°,
∴四边形ABED是矩形,
∴BE=AD=2,DE=AB=2,
∵将△ABC绕点C顺时针方向旋转后得△A′B′C,
∴∠DB′C=∠ABC=90°,B′C=BC,A′C=AC,∠A′CA=∠B′CB,
∴△A′CA∽△B′CB,
∴=,
∵△B′CD为等腰三角形,
∴△B′CD为等腰直角三角形,
∴CD=B′C,
设B′C=BC=x,则CD=x,CE=x﹣2,
∵CD2=CE2+DE2,
∴(x)2=(x﹣2)2+(2)2,
∴x=4(负值舍去),
∴BC=4,
∴AC==2,
∴=,
∴A′A=,
故选:A.
二、填空题:本大题共6小题,每小题4分,共24分.将答案填写在答题卡相应的横线上.
13.(4分)因式分解:x3y﹣4xy3= xy(x+2y)(x﹣2y) .
【分析】先提取公因式xy,再对余下的多项式利用平方差公式继续分解.
【解答】解:x3y﹣4xy3,
=xy(x2﹣4y2),
=xy(x+2y)(x﹣2y).
故答案为:xy(x+2y)(x﹣2y).
14.(4分)平面直角坐标系中,将点A(﹣1,2)先向左平移2个单位,再向上平移1个单位后得到的点A1的坐标为 (﹣3,3) .
【分析】根据在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.)即可得结论.
【解答】解:∵将点A(﹣1,2)先向左平移2个单位,横坐标﹣2,
再向上平移1个单位纵坐标+1,
∴平移后得到的点A1的坐标为:(﹣3,3).
故答案为:(﹣3,3).
15.(4分)若多项式xy|m﹣n|+(n﹣2)x2y2+1是关于x,y的三次多项式,则mn= 0或8 .
【分析】直接利用多项式的次数确定方法得出答案.
【解答】解:∵多项式xy|m﹣n|+(n﹣2)x2y2+1是关于x,y的三次多项式,
∴n﹣2=0,1+|m﹣n|=3,
∴n=2,|m﹣n|=2,
∴m﹣n=2或n﹣m=2,
∴m=4或m=0,
∴mn=0或8.
故答案为:0或8.
16.(4分)我市认真落实国家“精准扶贫”政策,计划在对口帮扶的贫困县种植甲、乙两种火龙果共100亩,根据市场调查,甲、乙两种火龙果每亩的种植成本分别为0.9万元、1.1万元,每亩的销售额分别为2万元、2.5万元,如果要求种植成本不少于98万元,但不超过100万元,且所有火龙果能全部售出,则该县在此项目中获得的最大利润是 125 万元.(利润=销售额﹣种植成本)
【分析】设甲种火龙果种植x亩,乙钟火龙果种植(100﹣x)亩,此项目获得利润w,根据题意列出不等式求出x的范围,然后根据题意列出w与x的函数关系即可求出答案.
【解答】解:设甲种火龙果种植x亩,乙钟火龙果种植(100﹣x)亩,此项目获得利润w,
甲、乙两种火龙果每亩利润为1.1万元,1.4万元,
由题意可知:,
解得:50≤x≤60,
此项目获得利润w=1.1x+1.4(100﹣x)=140﹣0.3x,
当x=50时,
w的最大值为140﹣15=125万元.
17.(4分)如图,四边形ABCD中,AB∥CD,∠ABC=60°,AD=BC=CD=4,点M是四边形ABCD内的一个动点,满足∠AMD=90°,则点M到直线BC的距离的最小值为 3﹣2 .
【分析】取AD的中点O,连接OM,过点M作ME⊥BC交BC的延长线于E,点点O作OF⊥BC于F,交CD于G,则OM+ME≥OF.求出OM,OF即可解决问题.
【解答】解:取AD的中点O,连接OM,过点M作ME⊥BC交BC的延长线于E,点点O作OF⊥BC于F,交CD于G,则OM+ME≥OF.
∵∠AMD=90°,AD=4,OA=OD,
∴OM=AD=2,
∵AB∥CD,
∴∠GCF=∠B=60°,
∴∠DGO=∠CGE=30°,
∵AD=BC,
∴∠DAB=∠B=60°,
∴∠ADC=∠BCD=120°,
∴∠DOG=30°=∠DGO,
∴DG=DO=2,
∵CD=4,
∴CG=2,
∴OG=2,GF=,OF=3,
∴ME≥OF﹣OM=3﹣2,
∴当O,M,E共线时,ME的值最小,最小值为3﹣2.
18.(4分)若不等式>﹣x﹣的解都能使不等式(m﹣6)x<2m+1成立,则实数m的取值范围是 ≤m≤6 .
【分析】解不等式>﹣x﹣得x>﹣4,据此知x>﹣4都能使不等式(m﹣6)x<2m+1成立,再分m﹣6=0和m﹣6≠0两种情况分别求解.
【解答】解:解不等式>﹣x﹣得x>﹣4,
∵x>﹣4都能使不等式(m﹣6)x<2m+1成立,
①当m﹣6=0,即m=6时,则x>﹣4都能使0•x<13恒成立;
②当m﹣6≠0,则不等式(m﹣6)x<2m+1的解要改变方向,
∴m﹣6<0,即m<6,
∴不等式(m﹣6)x<2m+1的解集为x>,
∵x>﹣4都能使x>成立,
∴﹣4≥,
∴﹣4m+24≤2m+1,
∴m≥,
综上所述,m的取值范围是≤m≤6.
故答案为:≤m≤6.
三、解答题:本大题共7小题,共计90分.解答应写出文字说明、证明过程或演算步骤.
19.(16分)(1)计算:|﹣3|+2cos60°﹣×﹣(﹣)0.
(2)先化简,再求值:(x+2+)÷,其中x=﹣1.
【分析】(1)先去绝对值符号、代入三角函数值、化简二次根式、计算零指数幂,再计算乘法,最后计算加减可得;
(2)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.
【解答】解:(1)原式=3﹣+2×﹣×2﹣1
=3﹣+﹣2﹣1
=0;
(2)原式=(+)÷
=•
=,
当x=﹣1时,
原式=
=
=1﹣.
20.(12分)4月23日是“世界读书日”,甲、乙两个书店在这一天举行了购书优惠活动.
甲书店:所有书籍按标价8折出售;
乙书店:一次购书中标价总额不超过100元的按原价计费,超过100元后的部分打6折.
(1)以x(单位:元)表示标价总额,y(单位:元)表示应支付金额,分别就两家书店的优惠方式,求y关于x的函数解析式;
(2)“世界读书日”这一天,如何选择这两家书店去购书更省钱?
【分析】(1)根据题意给出的等量关系即可求出答案.
(2)先求出两书店所需费用相同时的书本数量,从而可判断哪家书店省钱.
【解答】解:(1)甲书店:y=0.8x,
乙书店:y=.
(2)令0.8x=0.6x+40,
解得:x=200,
当x<200时,选择甲书店更省钱,
当x=200,甲乙书店所需费用相同,
当x>200,选择乙书店更省钱.
21.(12分)为助力新冠肺炎疫情后经济的复苏,天天快餐公司积极投入到复工复产中.现有A、B两家农副产品加工厂到该公司推销鸡腿,两家鸡腿的价格相同,品质相近.该公司决定通过检查质量来确定选购哪家的鸡腿.检察人员从两家分别抽取100个鸡腿,然后再从中随机各抽取10个,记录它们的质量(单位:克)如表:
A加工厂
74
75
75
75
73
77
78
72
76
75
B加工厂
78
74
78
73
74
75
74
74
75
75
(1)根据表中数据,求A加工厂的10个鸡腿质量的中位数、众数、平均数;
(2)估计B加工厂这100个鸡腿中,质量为75克的鸡腿有多少个?
(3)根据鸡腿质量的稳定性,该快餐公司应选购哪家加工厂的鸡腿?
【分析】(1)根据中位数、众数和平均数的计算公式分别进行解答即可;
(2)用总数乘以质量为75克的鸡腿所占的百分比即可;
(3)根据方差的定义,方差越小数据越稳定即可得出答案.
【解答】解:(1)把这些数从小到大排列,最中间的数是第5和第6个数的平均数,
则中位数是=75(克);
因为75出现了4次,出现的次数最多,
所以众数是75克;
平均数是:(74+75+75+75+73+77+78+72+76+75)=75(克);
(2)根据题意得:
100×=30(个),
答:质量为75克的鸡腿有30个;
(3)选B加工厂的鸡腿.
∵A、B平均值一样,B的方差比A的方差小,B更稳定,
∴选B加工厂的鸡腿.
22.(12分)如图,△ABC内接于⊙O,点D在⊙O外,∠ADC=90°,BD交⊙O于点E,交AC于点F,∠EAC=∠DCE,∠CEB=∠DCA,CD=6,AD=8.
(1)求证:AB∥CD;
(2)求证:CD是⊙O的切线;
(3)求tan∠ACB的值.
【分析】(1)由圆周角定理与已知得∠BAC=∠DCA,即可得出结论;
(2)连接EO并延长交⊙O于G,连接CG,则EG为⊙O的直径,∠ECG=90°,证明∠DCE=∠EGC=∠OCG,得出∠DCE+∠OCE=90°,即可得出结论;
(3)由三角函数定义求出cos∠ACD=,证出∠ABC=∠ACD=∠CAB,求出BC=AC=10,AB=12,过点B作BG⊥AC于C,设GC=x,则AG=10﹣x,由勾股定理得出方程,解方程得GC=,由勾股定理求出BG=,由三角函数定义即可得答案.
【解答】(1)证明:∵∠BAC=∠CEB,∠CEB=∠DCA,
∴∠BAC=∠DCA,
∴AB∥CD;
(2)证明:连接EO并延长交⊙O于G,连接CG,如图1所示:
则EG为⊙O的直径,
∴∠ECG=90°,
∵OC=OG,
∴∠OCG=∠EGC,
∵∠EAC=∠EGC,∠EAC=∠DCE,
∴∠DCE=∠EGC=∠OCG,
∵∠OCG+∠OCE=∠ECG=90°,
∴∠DCE+∠OCE=90°,即∠DCO=90°,
∵OC是⊙O的半径,
∴CD是⊙O的切线;
(3)解:在Rt△ADC中,由勾股定理得:AC===10,
∴cos∠ACD===,
∵CD是⊙O的切线,AB∥CD,
∴∠ABC=∠ACD=∠CAB,
∴BC=AC=10,AB=2BC•cos∠ABC=2×10×=12,
过点B作BG⊥AC于C,如图2所示:
设GC=x,则AG=10﹣x,
由勾股定理得:AB2﹣AG2=BG2=BC2﹣GC2,
即:122﹣(10﹣x)2=102﹣x2,
解得:x=,
∴GC=,
∴BG===,
∴tan∠ACB===.
23.(12分)如图,在平面直角坐标系xOy中,一次函数的图象与反比例函数y=(k<0)的图象在第二象限交于A(﹣3,m),B(n,2)两点.
(1)当m=1时,求一次函数的解析式;
(2)若点E在x轴上,满足∠AEB=90°,且AE=2﹣m,求反比例函数的解析式.
【分析】(1)将点A坐标代入反比例函数解析式中求出k,进而得出点B坐标,最后用待定系数法求出直线AB的解析式;
(2)先判断出BF=AE,进而得出△AEG≌Rt△BFG(AAS),得出AG=BG,EG=FG,即BE=BG+EG=AG+FG=AF,再求出m=﹣n,进而得出BF=2+n,MN=n+3,即BE=AF=n+3,再判断出△AME∽△ENB,得出==,得出ME=BN=,最后用勾股定理求出m,即可得出结论.
【解答】解:(1)当m=1时,点A(﹣3,1),
∵点A在反比例函数y=的图象上,
∴k=﹣3×1=﹣3,
∴反比例函数的解析式为y=﹣;
∵点B(n,2)在反比例函数y=﹣图象上,
∴2n=﹣3,
∴n=﹣,
设直线AB的解析式为y=ax+b,则,
∴,
∴直线AB的解析式为y=x+3;
(2)如图,过点A作AM⊥x轴于M,过点B作BN⊥x轴于N,过点A作AF⊥BN于F,交BE于G,
则四边形AMNF是矩形,
∴FN=AM,AF=MN,
∵A(﹣3,m),B(n,2),
∴BF=2﹣m,
∵AE=2﹣m,
∴BF=AE,
在△AEG和△BFG中,,
∴△AEG≌Rt△BFG(AAS),
∴AG=BG,EG=FG,
∴BE=BG+EG=AG+FG=AF,
∵点A(﹣3,m),B(n,2)在反比例函数y=的图象上,
∴k=﹣3m=2n,
∴m=﹣n,
∴BF=BN﹣FN=BN﹣AM=2﹣m=2+n,MN=n﹣(﹣3)=n+3,
∴BE=AF=n+3,
∵∠AEM+∠MAE=90°,∠AEM+∠BEN=90°,
∴∠MAE=∠NEB,
∵∠AME=∠ENB=90°,
∴△AME∽△ENB,
∴====,
∴ME=BN=,
在Rt△AME中,AM=m,AE=2﹣m,根据勾股定理得,AM2+ME2=AE2,
∴m2+()2=(2﹣m)2,
∴m=,
∴k=﹣3m=﹣,
∴反比例函数的解析式为y=﹣.
24.(12分)如图,抛物线过点A(0,1)和C,顶点为D,直线AC与抛物线的对称轴BD的交点为B(,0),平行于y轴的直线EF与抛物线交于点E,与直线AC交于点F,点F的横坐标为,四边形BDEF为平行四边形.
(1)求点F的坐标及抛物线的解析式;
(2)若点P为抛物线上的动点,且在直线AC上方,当△PAB面积最大时,求点P的坐标及△PAB面积的最大值;
(3)在抛物线的对称轴上取一点Q,同时在抛物线上取一点R,使以AC为一边且以A,C,Q,R为顶点的四边形为平行四边形,求点Q和点R的坐标.
【分析】(1)由待定系数法求出直线AB的解析式为y=﹣x+1,求出F点的坐标,由平行四边形的性质得出﹣3a+1=a﹣8a+1﹣(﹣),求出a的值,则可得出答案;
(2)设P(n,﹣n2+2n+1),作PP'⊥x轴交AC于点P',则P'(n,﹣n+1),得出PP'=﹣n2+n,由二次函数的性质可得出答案;
(3)联立直线AC和抛物线解析式求出C(,﹣),设Q(,m),分两种情况:①当AQ为对角线时,②当AR为对角线时,分别求出点Q和R的坐标即可.
【解答】解:(1)设抛物线的解析式为y=ax2+bx+c(a≠0),
∵A(0,1),B(,0),
设直线AB的解析式为y=kx+m,
∴,
解得,
∴直线AB的解析式为y=﹣x+1,
∵点F的横坐标为,
∴F点纵坐标为﹣+1=﹣,
∴F点的坐标为(,﹣),
又∵点A在抛物线上,
∴c=1,
对称轴为:x=﹣,
∴b=﹣2a,
∴解析式化为:y=ax2﹣2ax+1,
∵四边形DBFE为平行四边形.
∴BD=EF,
∴﹣3a+1=a﹣8a+1﹣(﹣),
解得a=﹣1,
∴抛物线的解析式为y=﹣x2+2x+1;
(2)设P(n,﹣n2+2n+1),作PP'⊥x轴交AC于点P',
则P'(n,﹣n+1),
∴PP'=﹣n2+n,
S△ABP=OB•PP'=﹣n=﹣+,
∴当n=时,△ABP的面积最大为,此时P(,).
(3)∵,
∴x=0或x=,
∴C(,﹣),
设Q(,m),
①当AQ为对角线时,
∴R(﹣),
∵R在抛物线y=+4上,
∴m+=﹣+4,
解得m=﹣,
∴Q,R;
②当AR为对角线时,
∴R(),
∵R在抛物线y=+4上,
∴m﹣+4,
解得m=﹣10,
∴Q(,﹣10),R().
综上所述,Q,R;或Q(,﹣10),R().
25.(14分)如图,在矩形ABCD中,对角线相交于点O,⊙M为△BCD的内切圆,切点分别为N,P,Q,DN=4,BN=6.
(1)求BC,CD;
(2)点H从点A出发,沿线段AD向点D以每秒3个单位长度的速度运动,当点H运动到点D时停止,过点H作HI∥BD交AC于点I,设运动时间为t秒.
①将△AHI沿AC翻折得△AH′I,是否存在时刻t,使点H′恰好落在边BC上?若存在,求t的值;若不存在,请说明理由;
②若点F为线段CD上的动点,当△OFH为正三角形时,求t的值.
【分析】(1)由切线长定理得出BP=BN=6,DQ=DN=4,CP=CQ,BD=BN+DN=10,设CP=CQ=a,由勾股定理得出BC2+CD2=BD2,得出方程,解方程即可;
(2)①由折叠的性质得∠AH'I=∠AHI,AH'=AH=3t,证明△AIH'∽△AH'C,则AH'2=AI×AC,证△AIH∽△AOD,求出AI=t,得出(3t)2=t×10,解方程即可;
②作PH⊥OH于H,交OF的延长线于P,作OM⊥AD于M,PN⊥AD于N,证出FH=FP=OF,HP=OH,DN=DM=4,证明△OMH∽△HNP,求出HN=OM=3,则DH=HN﹣DN=3﹣4,得出AH=AD﹣DH=12﹣3,即可得出答案.
【解答】解:(1)∵⊙M为△BCD的内切圆,切点分别为N,P,Q,DN=4,BN=6,
∴BP=BN=6,DQ=DN=4,CP=CQ,BD=BN+DN=10,
设CP=CQ=a,则BC=6+a,CD=4+a,
∵四边形ABCD是矩形,
∴∠BCD=90°,
∴BC2+CD2=BD2,即(6+a)2+(4+a)2=102,
解得:a=2,
∴BC=6+2=8,CD=4+2=6;
(2)①存在时刻t=s,使点H′恰好落在边BC上;理由如下:
如图1所示:
由折叠的性质得:∠AH'I=∠AHI,AH'=AH=3t,
∵四边形ABCD是矩形,
∴AD=BC=8,AD∥BC,∠BCD=90°,OA=OC=AC,OB=OD=BD,AC=BD,
∴AC=BD===10,OA=OD=5,
∴∠ADO=∠OAD,
∵HI∥BD,
∴∠AHI=∠ADO,
∴∠AH'I=∠AHI=∠ADO=∠OAD=∠ACH',
∴△AIH'∽△AH'C,
∴=,
∴AH'2=AI×AC,
∵HI∥BD,
∴△AIH∽△AOD,
∴=,即=,
解得:AI=t,
∴(3t)2=t×10,
解得:t=,
即存在时刻t=s,使点H′恰好落在边BC上;
②作PH⊥OH于H,交OF的延长线于P,作OM⊥AD于M,PN⊥AD于N,如图2所示:
则OM∥CD∥PN,∠OMH=∠HNP=90°,OM是△ACD的中位线,
∴OM=CD=3,
∵△OFH是等边三角形,
∴OF=FH,∠OHF=∠HOF=60°,
∴∠FHP=∠HPO=30°,
∴FH=FP=OF,HP=OH,
∴DF是梯形OMNP的中位线,
∴DN=DM=4,
∵∠MHO+∠MOH=∠MHO+∠NHP=90°,
∴∠MOH=∠NHP,
∴△OMH∽△HNP,
∴==,
∴HN=OM=3,
∴DH=HN﹣DN=3﹣4,
∴AH=AD﹣DH=12﹣3,
∴t==4﹣,
即当△OFH为正三角形时,t的值为(4﹣)s.
相关资料
更多