年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2019届二轮复习利用函数解决实际问题学案(全国通用)

    2019届二轮复习利用函数解决实际问题学案(全国通用)第1页
    2019届二轮复习利用函数解决实际问题学案(全国通用)第2页
    2019届二轮复习利用函数解决实际问题学案(全国通用)第3页
    还剩10页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2019届二轮复习利用函数解决实际问题学案(全国通用)

    展开

    第13炼 利用数学模型解决实际问题一、基础知识:1、使用函数模型解决实际问题(1)题目特点:叙述中体现两个变量之间的关系(涉及的量也许有多个,但均能够用两个核心变量进行表示)。以其中一个为自变量,则另一个变量可视为自变量的函数,进而搭建出函数模型,再根据导数,均值不等式等工具求出最值(2)需用到的数学工具与知识点: 分段函数:当自变量的不同取值导致解析式不同时,可通过建立分段函数来体现两个变量之间的关系,在题目中若有多种情况,且不同的情况对应不同的计算方式,则通常要用分段函数进行表示。 导数:在求最值的过程中,若函数解析式不是常见的函数(二次函数,对勾函数等),则可利用导数分析其单调性,进而求得最值 均值不等式:在部分解析式中(可构造和为定值或积为定值)可通过均值不等式迅速的找到最值。 分式函数的值域问题:可通过分离常数对分式进行变形,并利用换元将其转化为熟悉的函数求解(3)常见的数量关系: 面积问题:可通过寻底找高进行求解,例如:平行四边形面积               梯形面积上底下底)  三角形面积 商业问题:总价单价数量                利润营业额成本货物单价数量成本 利息问题:利息本金利率                本息总和本金利息本金利率本金(4)在解决实际问题时要注意变量的取值范围应与实际情况相符,例如:涉及到个数时,变量应取正整数。涉及到钱,速度等问题,变量的取值应该为正数。2、使用线性规划模型解决实际问题(1)题目特点:叙述中也有两个核心变量,但条件多为涉及两核心变量的不等关系,且所求是关于两个核心变量的表达式,这类问题通常使用线性规划模型来解决问题(2)与函数模型的不同之处 函数模型:体现两核心变量之间的等量关系,根据一个变量的范围求另一个变量的范围(或最值) 线性规划模型:体现关于两变量的不等关系,从而可列出不等式组,要解决的是含两个变量的表达式的最值。(3)解题步骤:根据题目叙述确定未知变量(通常选择两个核心变量,其余变量用这两个进行表示),并列出约束条件和目标函数,然后利用数形结合的方式进行解决(4)注意事项:在实际问题中,变量的取值有可能为整数,若最优解不是整数,则可在最优解附近寻找几对整点,代入到目标函数中并比较大小3、使用三角函数模型解决实际问题(1)题目特点:题目以几何图形(主要是三角形)作为基础,条件多与边角相关(2)需要用到的数学工具与知识点: 正弦定理:设三边所对的角分别为则有 余弦定理(以和对角为例), 三角函数表达式的化简与变形 函数的值域(3)解题技巧与注意事项: 在求边角问题时,应把所求的边或角放在合适的三角形中 在直角三角形里,已知一条边,则其它边可用该边与内角的三角函数值进行表示 在图形中要注意变量的取值范围二、典型例题:例1:如图所示,将一矩形花坛扩建成一个更大的矩形花坛,要求 的延长线上,的延长线上,且对角线 点。已知米,米。(1)设(单位:米),要使花坛的面积大于32平方米,求的取值范围;(2)若(单位:米),则当的长度分别是多少时,花坛的面积最大?并求出最大面积。(1)思路:根据相似三角形可得线段比例:从而解出从而可得解出的范围即可解:      依题意可得:解得: (2)思路:求面积的最大值即求表达式的最大值分离常数求解即可解:设 根据对勾函数可得达到最大值 此时所以 答:当四边形的面积最大 2:时下网校教学越来越受到广大学生的喜爱,它已经成为学生们课外学习的一种趋势,假设某网校的套题每日的销售量y(单位:千套)与销售价格:(单位:元/套)满足的关系式,其中为常数.已知销售价格为4元/套时,每日可售出套题21千套.(1)求的值;(2)假设网校的员工工资、办公等所有开销折合为每套题2元(只考虑销售出的套数),试确定销售价格的值,使网校每日销售套题所获得的利润最大.(保留1位小数):(1)将代入关系式可得 (2)思路:依题意可得售出一套,所得利润为所以总的利润,其中利用导数判定的单调性进而可求得最大值点 解:依题意所获利润化简可得: 即解不等式   解得 单调递增单调递减取得最大值 例3:某人销售某种商品,发现每日的销售量(单位:kg)与销售价格 (单位:元/kg)满足关系式,其中 为常数.已知销售价格为8元/kg时,该日的销售量是80kg.(1)求的值;(2)若该商品成本为6元/kg,求商品销售价格为何值时,每日销售该商品所获得的利润最大.:(1)当时,解得 (2)思路:依题意可得销售商品所获得利润所以也是一个分段函数可以考虑分别求出每段函数值的最大值然后进行比较即可挑出的最大值解:设商品利润为则有由第(1)问可得: 解得 单调递增单调递减 单调递减 4:已知某食品厂需要定期购买食品配料,该厂每天需要食品配料200千克,配料的价格为/千克,每次购买配料需支付运费236元,每次购买来的配料还需支付保管费用,其标准如下:7天以内(含7天),无论重量度搜好,均按10/天支付,超出7天以外的天数,根据实际剩余配料的重量,以每天0.03/千克支付1)当9天购买一次配料时,求该厂用于配料的保管费用是多少元2)设该厂天购买一次配料求该厂在这天中用于配料的总费用(元)关于的函数关系式并求出该厂多少天购买一次配料才能使平均每天支付的费用最少解:(1)第8天剩余配料为千克9天剩余配料为千克该厂用于配料的保管费为2)当              综上所述: 为平均每天支付的费用 等号成立条件: 例5:甲,乙两校计划周末组织学生参加敬老活动,甲校每位同学的往返车费是5元,每人可为3位老人服务,乙校每位同学往返车费是3元,每人可为5位老人服务,两校都有学生参加,甲校参加活动的学生比乙校至少多1人,且两校同学往返总车费不超过45元,如何安排甲,乙两校参加活动的人数,才能使收到服务的老人最多?此时受到服务的老人最多有多少人?思路:本题涉及的变量有两个:甲校人数与乙校的人数,且所给条件均为关于两校人数的不等式,所以可联想到线性规划问题。可设甲校人数为乙校人数为所求问题为目标函数列出约束条件后通过数形结合即可求出的最大值解:设甲校人数为乙校人数为依题意应满足的条件为 目标函数通过数形结合可得。动直线经过取得最大值   例6:如图,某海滨浴场的岸边可近似地看成直线,位于岸边A处的救生员发现海中B处有人求救,救生员没有直接从A处游向B处,而是沿岸边自A跑到距离B最近的D处,然后游向B处,若救生员在岸边的行进速度为6米/秒,在海中的行进速度为2米/秒,(1)分析救生员的选择是否正确;(2)在AD上找一点C,使救生员从A到B的时间为最短,并求出最短时间解:(1)思路:所谓选择是否正确,是指方案二所用的时间是否比直接游到处时间短所以考虑分别求出两种方案所用的时间再进行比较即可从图形可得所以s所以s所以救生员的选择是正确的(2)思路:要求得时间的最值,考虑创设一个变量 ,并构造出时间关于的函数 再求出的最小值即可。不妨设所以时间再求导求出的最小值即可解:设设所用时间为   即解不等式     解得 单调递减单调递增答:当救生员所用的时间最短答:甲,乙两校参加活动的人数分别为6和5时,受到服务的老人最多,最多为43人例7:某人有楼房一幢,室内面积共计180m2,拟分割成两类房间作为旅游客房,大房间每间面积为18m2,可住游客5名,每名游客每天住宿费40元;小房间每间面积为15m2,可以住游客3名,每名游客每天住宿费50元;装修大房间每间需要1000元,装修小房间每间需要600元.如果他只能筹款8000元用于装修,且游客能住满客房,他应隔出大房间和小房间各多少间,每天能获得最大的房租收益?(注:设分割大房间为间,小房间为间,每天的房租收益为元),求各为多少时,每天能获得最大的房租收益?每天能获得最大的房租收益是多少?思路:本题的主要变量是从题目中可发现对的约束条件有3个,一个是房间数必须是非负整数,所以第二个条件是室内面积为所以大小房间面积和要不大于第三个条件是装修费用总和不高于8000元,据此列出约束条件:所求收益所以该模型为线性规划问题数形结合即可解:依题意可得的约束条件为所求目标函数为作出可行域,依图可得:直线过最大当大房间为3间,小房间为8间;或者不设大房间,小房间为12间时,收益最大,最大值为8:某棚户区改造建筑用地平面示意图如图所示,经规划调研确定,棚改规划建筑用地区域近似地为半径是的圆面该圆面的内接四边形是原棚户建筑用地测量可知边界万米万米万米1)请计算原棚户区建筑用地的面积及圆面半径的值2)因地理条件的限制,边界不能变更而边界可以调整为了提高棚户区改造建筑用地的利用率,请在圆弧上设计一点使得棚户区改造的新建筑用地的面积最大并求最大值解:(1)在由余弦定理可得 由余弦定理可得 因为四边形内接于圆     所以由①②可得: 解得:           万平方米由余弦定理可得:    2)设可知 由(1)可知   若要面积最大只需最大 由余弦定理可得 当且仅当等号成立 所以四边形的最大面积为万平方米9:如图是一块平行四边形园地,经测量,拟过线段上一点设计一条直路在四边形的边上,不计路的宽度),将该园地分为面积比为的左右两部分分别种植不同的花卉单位m1)当点与点重合时试确定点的位置2)求关于的函数表达式3)试确定点的位置使得直路长度最短解:(1)当重合时为平行四边形的高 依题意可得:的中点2在线段 可得在线段       在线段此时四边形为梯形或平行四边形 综上所述可得:3)即求的最小值 等号成立条件: 等号成立条件: 此时 10:如图,在海岸线一侧有一休闲游乐场游乐场的前一部分边界为曲线段该曲线段是函数的图像图像的最高点为边界的中间部分为长1千米的直线段游乐场的后一部分边界是以为圆心的一段圆弧 (1)求曲线的函数表达式2)曲线段上的入口距海岸线最近距离为千米现准备从入口修一条笔直的景观路到求景观路的长度3)如图,在扇形区域内建一个平行四边形休闲区平行四边形的一边在海岸线一边在半径另外一个顶点在圆弧求平行 四边形休闲区面积的最大值及此时的值解:(1)由可知 对于 此时由图像过可得 曲线的函数表达式为2)由已知可得    解得:可得 3)由图可知, 轴于        的最大值为  

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map