2019届二轮复习二次函数与幂函数学案(全国通用)
展开
2019届二轮复习 二次函数与幂函数 学案 (全国通用)
1.了解幂函数的概念;结合函数y=x,y=x2,y=x3,y=x,y=的图象,了解它们的变化情况;
2.理解二次函数的图象和性质,能用二次函数、方程、不等式之间的关系解决简单问题.
1.幂函数
(1)幂函数的定义
一般地,形如y=xα的函数称为幂函数,其中x是自变量,α为常数.
(2)常见的5种幂函数的图象
(3)常见的5种幂函数的性质
函数
特征
性质
y=x
y=x2
y=x3
y=x
y=x-1
定义域
R
R
R]
[0,+∞)
{x|x∈R,且x≠0}
值域
R
[0,+∞)
R
[0,+ ∞)
{y|y∈R,且y≠0}
奇偶性
奇
偶
奇
非奇非偶
奇
2.二次函数
(1)二次函数解析式的三种形式:
一般式:f(x)=ax2+bx+c(a≠0).
顶点式:f(x)=a(x-m)2+n(a≠0),顶点坐标为(m,n).
零点式:f(x)=a(x-x1)(x-x2)(a≠0),x1,x2为f(x)的零点.
(2)二次函数的图象和性质
解析式
f(x)=ax2+bx+c(a>0)
f(x)=ax2+bx+c(a(m2+m-1),则实数m的取值范围是( )
A. B.
C.(-1,2) D.
解析 (1)由幂函数的定义知k=1.又f=,
所以=,解得α=,从而k+α=.
(2)因为函数y=x的定义域为[0,+∞),
且在定义域内为增函数,
所以不等式等价于
解得
即≤m0时,图象过原点和(1,1),在第一象限的图象上升;当α