2019届二轮复习第2讲 分类讨论思想、转化与化归思想学案(全国通用)
展开
第2讲 分类讨论思想、转化与化归思想
高考定位 分类讨论思想、转化与化归思想近几年高考每年必考,一般体现在解析几何、函数与导数及数列解答题中,难度较大.
1.中学数学中可能引起分类讨论的因素
(1)由数学概念而引起的分类讨论:如绝对值的定义、不等式的定义、二次函数的定义、直线的倾斜角等.
(2)由数学运算要求而引起的分类讨论:如除法运算中除数不为零,偶次方根被开方数为非负数,对数运算中真数与底数的要求,指数运算中底数的要求,不等式中两边同乘以一个正数、负数,三角函数的定义域,等比数列{an}的前n项和公式等.
(3)由性质、定理、公式的限制而引起的分类讨论:如函数的单调性、基本不等式等.
(4)由图形的不确定性而引起的分类讨论:如二次函数图象、指数函数图象、对数函数图象等.
(5)由参数的变化而引起的分类讨论:如某些含有参数的问题,由于参数的取值不同会导致所得的结果不同,或者由于对不同的参数值要运用不同的求解或证明方法等.
2.常见的转化与化归的方法
转化与化归思想方法用在研究、解决数学问题时,思维受阻或寻求简单方法或从一种状况转化到另一种情形,也就是转化到另一种情境使问题得到解决,这种转化是解决问题的有效策略,同时也是获取成功的思维方式.常见的转化方法有:
(1)直接转化法:把原问题直接转化为基本定理、基本公式或基本图形问题.
(2)换元法:运用“换元”把式子转化为有理式或使整式降幂等,把较复杂的函数、方程、不等式问题转化为易于解决的基本问题.
(3)数形结合法:研究原问题中数量关系(解析式)与空间形式(图形)关系,通过互相变换获得转化途径.
(4)等价转化法:把原问题转化为一个易于解决的等价命题,达到化归的目的.
(5)特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的问题、结论适合原问题.
(6)构造法:“构造”一个合适的数学模型,把问题变为易于解决的问题.
(7)坐标法:以坐标系为工具,用计算方法解决几何问题是转化方法的一个重要途径.
(8)类比法:运用类比推理,猜测问题的结论,易于确定.
(9)参数法:引进参数,使原问题转化为熟悉的形式进行解决.
(10)补集法:如果正面解决原问题有困难,可把原问题的结果看作集合A,而把包含该问题的整体问题的结果类比为全集U,通过解决全集U及补集∁UA获得原问题的解决,体现了正难则反的原则.
热点一 分类讨论思想的应用
[应用1] 由性质、定理、公式的限制引起的分类
【例1-1】 (1)设数列{an}的前n项和为Sn,已知2Sn=3n+3,则数列{an}的通项an=________.
(2)已知实数a≠0,函数f(x)=若f(1-a)=f(1+a),则a的值为________.
解析 (1)由2Sn=3n+3得:当n=1时,2S1=31+3=2a1,解得a1=3;
当n≥2时,an=Sn-Sn-1=[(3n+3)-(3n-1+3)]=3n-1,由于n=1时,a1=3不适合上式.∴数列{an}的通项公式为an=
(2)当a>0时,1-a1,这时f(1-a)=2(1-a)+a=2-a,
f(1+a)=-(1+a)-2a=-1-3a.
由f(1-a)=f(1+a)得2-a=-1-3a,解得a=-,不合题意,舍去;
当a1,1+a