2020届二轮复习目标范围与最值,函数处理最相宜学案(全国通用)
展开【题型综述】
圆锥曲线中的目标取值范围与最值问题关键是选取合适的变量建立目标函数,转化函数的取值范围与最值问题,其求解策略一般有以下几种:①几何法:若目标函数有明显几何特征和意义,则考虑几何图形的性质求解;②代数法:若目标函数的几何意义不明显,利用基本不等式、导数等方法求函数的值域或最值,注意变量的范围,在对目标函数求最值前,常要对函数进行变换,注意变形技巧,若一个函数式的分母中含有一次式或二次式、分子中含有一次式或二次式的二次根式,则可以通过换元的方法把其转化为分母为二次式、分子为一次式的函数式,这样便于求解此函数式的最值.@
【典例指引】
类型一 角的最值问题
例1 【2017山东,理21】在平面直角坐标系中,椭圆:的离心率为,焦距为.
(Ⅰ)求椭圆的方程;
(Ⅱ)如图,动直线:交椭圆于两点,是椭圆上一点,直线的斜率为,且,是线段延长线上一点,且,的半径为,是的两条切线,切点分别为.求的最大值,并求取得最大值时直线的斜率.
【解析】(I)由题意知 ,,所以 ,
因此 椭圆的方程为.
(Ⅱ)设,联立方程
得,由题意知,且,
所以 .
由题意可知圆的半径为
由题设知,所以因此直线的方程为.
因此 ,
当且仅当,即时等号成立,此时,所以 ,因此,
所以 最大值为.综上所述:的最大值为,取得最大值时直线的斜率为.
类型二 距离的最值问题
例2.【2017浙江,21】(本题满分15分)如图,已知抛物线,点A,,抛物线上的点.过点B作直线AP的垂线,垂足为Q.
(Ⅰ)求直线AP斜率的取值范围;
(Ⅱ)求的最大值.
【解析】(Ⅰ)设直线AP的斜率为k,则,∵,∴直线AP斜率的取值范围是.
令,因为,所以 f(k)在区间上单调递增,上单调递减,因此当k=时,取得最大值.
类型三 几何图形的面积的范围问题
例3【2016高考新课标1卷】(本小题满分12分)设圆的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.*
(I)证明为定值,并写出点E的轨迹方程;
(II)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.
【解析】(Ⅰ)因为,,故,
所以,故.
又圆的标准方程为,从而,所以.
由题设得,,,由椭圆定义可得点的轨迹方程为:
().
(Ⅱ)当与轴不垂直时,设的方程为,,.
由得.
可得当与轴不垂直时,四边形面积的取值范围为.
当与轴垂直时,其方程为,,,四边形的面积为12.
综上,四边形面积的取值范围为.
类型四 面积的最值问题
例4.【2016高考山东理数】(本小题满分14分)平面直角坐标系中,椭圆C: 的离心率是,抛物线E:的焦点F是C的一个顶点.
(I)求椭圆C的方程;
(II)设P是E上的动点,且位于第一象限,E在点P处的切线与C交与不同的两点A,B,线段AB的中点为D,直线OD与过P且垂直于x轴的直线交于点M.#
(i)求证:点M在定直线上;
(ii)直线与y轴交于点G,记的面积为,的面积为,求 的最大值及取得最大值时点P的坐标.
【解析】(Ⅰ)由题意知,可得:.
因为抛物线的焦点为,所以,
所以椭圆C的方程为.
(Ⅱ)(i)设,由可得,
所以直线的斜率为,
因此直线的方程为,即.
设,联立方程
得,
由,得且,
(ii)由(i)知直线方程为,
令得,所以,
又,
所以,
,
所以,
令,则,
当,即时,取得最大值,此时,满足,
所以点的坐标为,因此的最大值为,此时点的坐标为.
【扩展链接】
1.过椭圆 (a>0, b>0)上任一点任意作两条倾斜角互补的直线交椭圆于B,C两点,则直线BC有定向且(常数).
2.若椭圆 (a>0, b>0)与直线交于,则
(1)
(2),,
(3),.