2020年黑龙江省大庆市中考数学试卷 解析版
展开
2020年黑龙江省大庆市中考数学试卷
一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的序号填涂在答题卡上)
1.(3分)在﹣1,0,π,这四个数中,最大的数是( )
A.﹣1 B.0 C.π D.
2.(3分)天王星围绕太阳公转的轨道半径长约为2900000000km,数字2900000000用科学记数法表示为( )
A.2.9×108 B.2.9×109 C.29×108 D.0.29×1010
3.(3分)若|x+2|+(y﹣3)2=0,则x﹣y的值为( )
A.﹣5 B.5 C.1 D.﹣1
4.(3分)函数y=的自变量x的取值范围是( )
A.x≤0 B.x≠0 C.x≥0 D.x≥
5.(3分)已知正比例函数y=k1x和反比例函数y=,在同一直角坐标系下的图象如图所示,其中符合k1•k2>0的是( )
A.①② B.①④ C.②③ D.③④
6.(3分)将正方体的表面沿某些棱剪开,展成如图所示的平面图形,则原正方体中与数字5所在的面相对的面上标的数字为( )
A.1 B.2 C.3 D.4
7.(3分)在一次青年歌手比赛中,七位评委为某位歌手打出的分数如下:9.5,9.4,9.6,9.9,9.3,9.7,9.0(单位:分).若去掉一个最高分和一个最低分.则去掉前与去掉后没有改变的一个统计量是( )
A.平均分 B.方差 C.中位数 D.极差
8.(3分)底面半径相等的圆锥与圆柱的高的比为1:3,则圆锥与圆柱的体积的比为( )
A.1:1 B.1:3 C.1:6 D.1:9
9.(3分)已知两个直角三角形的三边长分别为3,4,m和6,8,n,且这两个直角三角形不相似,则m+n的值为( )
A.10+或5+2 B.15 C.10+ D.15+3
10.(3分)如图,在边长为2的正方形EFGH中,M,N分别为EF与GH的中点,一个三角形ABC沿竖直方向向上平移,在运动的过程中,点A恒在直线MN上,当点A运动到线段MN的中点时,点E,F恰与AB,AC两边的中点重合,设点A到EF的距离为x,三角形ABC与正方形EFGH的公共部分的面积为y.则当y=时,x的值为( )
A.或2+ B.或2﹣ C.2± D.或
二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)
11.(3分)点P(2,3)关于y轴的对称点Q的坐标为 .
12.(3分)分解因式:a3﹣4a= .
13.(3分)一个周长为16cm的三角形,由它的三条中位线构成的三角形的周长为 cm.
14.(3分)将两个三角尺的直角顶点重合为如图所示的位置,若∠AOD=108°,则∠COB= .
15.(3分)两个人做游戏:每个人都从﹣1,0,1这三个整数中随机选择一个写在纸上,则两人所写整数的绝对值相等的概率为 .
16.(3分)如图,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第20个图需要黑色棋子的个数为 .
17.(3分)已知关于x的一元二次方程:x2﹣2x﹣a=0,有下列结论:
①当a>﹣1时,方程有两个不相等的实根;
②当a>0时,方程不可能有两个异号的实根;
③当a>﹣1时,方程的两个实根不可能都小于1;
④当a>3时,方程的两个实根一个大于3,另一个小于3.
以上4个结论中,正确的个数为 .
18.(3分)如图,等边△ABC中,AB=3,点D,点E分别是边BC,CA上的动点,且BD=CE,连接AD、BE交于点F,当点D从点B运动到点C时,则点F的运动路径的长度为 .
三、解答题(本大题共10小题,共66分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)
19.(4分)计算:|﹣5|﹣(1﹣π)0+()﹣1.
20.(4分)先化简,再求值:(x+5)(x﹣1)+(x﹣2)2,其中x=.
21.(5分)解方程:﹣1=.
22.(6分)如图,AB,CD为两个建筑物,两建筑物底部之间的水平地面上有一点M,从建筑物AB的顶点A测得M点的俯角为45°,从建筑物CD的顶点C测得M点的俯角为75°,测得建筑物AB的顶点A的俯角为30°.若已知建筑物AB的高度为20米,求两建筑物顶点A、C之间的距离(结果精确到1m,参考数据:≈1.414,≈1.732).
23.(7分)为了了解某校某年级1000名学生一分钟的跳绳次数,从中随机抽取了40名学生的一分钟跳绳次数(次数为整数,且最高次数不超过150次),整理后绘制成如图的频数直方图,图中的a,b满足关系式2a=3b.后由于保存不当,部分原始数据模糊不清,但已知缺失数据都大于120.请结合所给条件,回答下列问题.
(1)求问题中的总体和样本容量;
(2)求a,b的值(请写出必要的计算过程);
(3)如果一分钟跳绳次数在125次以上(不含125次)为跳绳成绩优秀,那么估计该校该年级学生跳绳成绩优秀的人数大约是多少人?(注:该年级共1000名学生)
24.(7分)如图,在矩形ABCD中,O为对角线AC的中点,过点O作直线分别与矩形的边AD,BC交于M,N两点,连接CM,AN.
(1)求证:四边形ANCM为平行四边形;
(2)若AD=4,AB=2,且MN⊥AC,求DM的长.
25.(7分)期中考试后,某班班主任对在期中考试中取得优异成绩的同学进行表彰.她到商场购买了甲、乙两种笔记本作为奖品,购买甲种笔记本15个,乙种笔记本20个,共花费250元.已知购买一个甲种笔记本比购买一个乙种笔记本多花费5元.
(1)求购买一个甲种、一个乙种笔记本各需多少元?
(2)两种笔记本均受到了获奖同学的喜爱,班主任决定在期末考试后再次购买两种笔记本共35个,正好赶上商场对商品价格进行调整,甲种笔记本售价比上一次购买时减价2元,乙种笔记本按上一次购买时售价的8折出售.如果班主任此次购买甲、乙两种笔记本的总费用不超过上一次总费用的90%,求至多需要购买多少个甲种笔记本?并求购买两种笔记本总费用的最大值.
26.(8分)如图,反比例函数y=与一次函数y=﹣x﹣(k+1)的图象在第二象限的交点为A,在第四象限的交点为C,直线AO(O为坐标原点)与函数y=的图象交于另一点B.过点A作y轴的平行线,过点B作x轴的平行线,两直线相交于点E,△AEB的面积为6.
(1)求反比例函数y=的表达式;
(2)求点A,C的坐标和△AOC的面积.
27.(9分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,连接AD,过点D作DM⊥AC,垂足为M,AB、MD的延长线交于点N.
(1)求证:MN是⊙O的切线;
(2)求证:DN2=BN•(BN+AC);
(3)若BC=6,cosC=,求DN的长.
28.(9分)如图,抛物线y=ax2+bx+12与x轴交于A,B两点(B在A的右侧),且经过点C(﹣1,7)和点D(5,7).
(1)求抛物线的函数表达式;
(2)连接AD,经过点B的直线l与线段AD交于点E,与抛物线交于另一点F.连接CA,CE,CD,△CED的面积与△CAD的面积之比为1:7,点P为直线l上方抛物线上的一个动点,设点P的横坐标为t.当t为何值时,△PFB的面积最大?并求出最大值;
(3)在抛物线y=ax2+bx+12上,当m≤x≤n时,y的取值范围是12≤y≤16,求m﹣n的取值范围.(直接写出结果即可)
2020年黑龙江省大庆市中考数学试卷
参考答案与试题解析
一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的序号填涂在答题卡上)
1.【解答】解:根据实数比较大小的方法,可得
﹣1<0<<π,
∴在这四个数中,最大的数是π.
故选:C.
2.【解答】解:2900000000用科学记数法表示为2.9×109,
故选:B.
3.【解答】解:∵|x+2|+(y﹣3)2=0,
∴x+2=0,y﹣3=0,
解得:x=﹣2,y=3,
故x﹣y=﹣2﹣3=﹣5.
故选:A.
4.【解答】解:根据题意可得:2x≥0,
解得:x≥0,
故选:C.
5.【解答】解:①中k1>0,k2>0,故k1•k2>0,故①符合题意;
②中k1<0,k2>0,故k1•k2<0,故②不符合题意;
③中k1>0,k2<0,故k1•k2<0,故③不符合题意;
④中k1<0,k2<0,故k1•k2>0,故④符合题意;
故选:B.
6.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,
“1”与“6”是相对面,
“5”与“2”是相对面,
“3”与“4”是相对面.
故选:B.
7.【解答】解:原来7个数据,从小到大排列处在中间位置的那个数与去掉一个最高和一个最低后剩下的5个数中间位置的那个数是相同的,
因此中位数不变,
故选:C.
8.【解答】解:设圆锥和圆柱的底面圆的半径为r,圆锥的高为h,则圆柱的高为3h,
所以圆锥与圆柱的体积的比=(×πr2×h):(πr2×3h)=1:9.
故选:D.
9.【解答】解:当3,4为直角边,6,8也为直角边时,此时两三角形相似,不合题意;
当3,4为直角边,m=5;则8为另一三角形的斜边,其直角边为:=2,
故m+n=5+2;
当6,8为直角边,n=10;则4为另一三角形的斜边,其直角边为:=,
故m+n=10+;
故选:A.
10.【解答】解:如图1中,当过A在正方形内部时,连接EG交MN于O,连接OF,设AB交EH于Q,AC交FG于P.
由题意,△ABC是等腰直角三角形,AQ=OE=OG=AP=OF,S△OEF=1,
∵y=,
∴S四边形AOEQ+S四边形AOFP=1.5,
∴OA•2=1.5,
∴OA=,
∴AM=1+=.
如图2中,当点A在正方形外部时,
由题意,重叠部分是六边形WQRJPT,S重叠=S△ABC﹣2S△BQR﹣S△AWT,
∴2.5=××﹣1﹣×2AN×AN,
解得AN=,
∴AM=2+,
综上所述,满足条件的AM的值为或2+,
故选:A.
二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)
11.【解答】解:点P(2,3)关于y轴的对称点Q的坐标为(﹣2,3).
故答案为:(﹣2,3).
12.【解答】解:原式=a(a2﹣4)
=a(a+2)(a﹣2).
故答案为:a(a+2)(a﹣2)
13.【解答】解:如图,∵点D、E分别是AB、AC的中点
∴DE=BC.
同理可得:
DF=AC,EF=AB,
∴DE+DF+EF=(AB+BC+AC)=16=8(cm).
则三条中位线构成的三角形的周长为8cm.
故答案为:8.
14.【解答】解:∵∠COD=90°,∠AOB=90°,∠AOD=108°,
∴∠AOC=∠AOD﹣∠COD=108°﹣90°=18°,
∴∠COB=∠AOB﹣∠AOC=90°﹣18°=72°.
故答案为:72°.
15.【解答】解:画树状图为:
共有9种等可能的结果,其中两数的绝对值相等的结果数为5,
所以两人所写整数的绝对值相等的概率=.
故答案为.
16.【解答】解:观察图形可知:
第1个图需要黑色棋子的个数为:3=1×3;
第2个图需要黑色棋子的个数为:8=2×4;
第3个图需要黑色棋子的个数为:15=3×5;
第4个图需要黑色棋子的个数为:24=4×6;
…
发现规律:
第n个图需要黑色棋子的个数为:n(n+2);
所以第20个图需要黑色棋子的个数为:20(20+2)=440.
故答案为:440.
17.【解答】解:∵x2﹣2x﹣a=0,
∴△=4+4a,
∴①当a>﹣1时,△>0,方程有两个不相等的实根,故①正确,
②当a>0时,两根之积<0,方程的两根异号,故②错误,
③方程的根为x==1±,
∵a>﹣1,
∴方程的两个实根不可能都小于1,故③正确,
④若方程的两个实根一个大于3,另一个小于3.
则有32﹣6﹣a<0,
∴a>3,故④正确,
故答案为①③④.
18.【解答】解:∵△ABC是等边三角形,
∴AB=BC=AC,∠ABC=∠BAC=∠BCE=60°,
∴在△ABD和△BCE中,
,
∴△ABD≌△BCE(SAS),
∴∠BAD=∠CBE,
∵∠AFE=∠BAD+∠FBA=∠CBE+∠FBA=∠ABC=60°,
∴∠AFB=120°,
∴点F的运动轨迹是以点O为圆心,OA为半径的弧上运动,
如图,
此时∠AOB=120°,OA==,
所以弧AB的长为:=.
则点F的运动路径的长度为.
故答案为:.
三、解答题(本大题共10小题,共66分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)
19.【解答】解:|﹣5|﹣(1﹣π)0+()﹣1
=5﹣1+3
=7.
20.【解答】解:原式=x2+4x﹣5+x2﹣4x+4
=2x2﹣1,
当x=时,原式=2()2﹣1=5.
21.【解答】解:方程的两边同乘x﹣1,得:2x﹣x+1=4,
解这个方程,得:x=3,
经检验,x=3是原方程的解,
∴原方程的解是x=3.
22.【解答】解:∵AB⊥BD,∠BAM=45°,
∴∠AMB=45°,
∴∠AMB=∠BAM,
∴AB=BM=20,
∴在Rt△ABM中,AM=20,
作AE⊥MC于E,
由题意得∠ACM=45°,∠CAM=75°,
∴∠AMC=60°,
∴在Rt△AME中,AM=20,
∵sin∠AME=,
∴AE=sin60°•20=×20=10,
在Rt△AEC中,∠AEC=90°,∠ACE=45°,AE=10,
∴sin∠ACE=,
∴AC===20≈35(米),
答:两建筑物顶点A、C之间的距离约为35米.
23.【解答】解:(1)1000名学生一分钟的跳绳次数是总体,
40名学生的一分钟跳绳次数是样本容量;
(2)由题意所给数据可知:
50.5~75.5的有4人,
75.5~100.5的有16人,
∴a+b=40﹣4﹣16=20,
∵2a=3b,
∴解得a=12,b=8,
(3)1000×=200(人),
答:估计该校该年级学生跳绳成绩优秀的人数大约是200人.
24.【解答】解:(1)证明:∵在矩形ABCD中,O为对角线AC的中点,
∴AD∥BC,AO=CO,
∴∠OAM=∠OCN,∠OMA=∠ONC,
在△AOM和△CON中,
,
∴△AOM≌△CON(AAS),
∴AM=CN,
∵AM∥CN,
∴四边形ANCM为平行四边形;
(2)∵在矩形ABCD中,AD=BC,
由(1)知:AM=CN,
∴DM=BN,
∵四边形ANCM为平行四边形,MN⊥AC,
∴平行四边形ANCM为菱形,
∴AM=AN=NC=AD﹣DM,
∴在Rt△ABN中,根据勾股定理,得
AN2=AB2+BN2,
∴(4﹣DM)2=22+DM2,
解得DM=.
25.【解答】解:(1)设购买一个甲种笔记本需要x元,购买一个乙种笔记本需要y元,
依题意,得:,
解得:.
答:购买一个甲种笔记本需要10元,购买一个乙种笔记本需要5元.
(2)设购买m个甲种笔记本,则购买(35﹣m)个乙种笔记本,
依题意,得:(10﹣2)m+5×0.8(35﹣m)≤250×90%,
解得:m≤21,
又∵m为正整数,
∴m可取的最大值为21.
设购买两种笔记本总费用为w元,则w=(10﹣2)m+5×0.8(35﹣m)=4m+140,
∵k=4>0,
∴w随m的增大而增大,
∴当m=21时,w取得最大值,最大值=4×21+140=224.
答:至多需要购买21个甲种笔记本,购买两种笔记本总费用的最大值为224元.
26.【解答】解:(1)由题意得,点A与点B关于原点对称,即OA=OB,
∴=()2=,
又△AEB的面积为6,
∴S△AOM=S△ABE=×6==|k|,
∴k=﹣3,k=3(舍去),
∴反比例函数的关系式为y=﹣;
(2)由k=﹣3可得一次函数y=﹣x+2,由题意得,
,解得,,,
又A在第二象限,点C在第四象限,
∴点A(﹣1,3),点C(3,﹣1),
(2)一次函数y=﹣x+2与y轴的交点N的坐标为(0,2),
∴S△AOC=S△CON+S△AON=×2×(1+3)=4.
27.【解答】证明:(1)如图,连接OD,
∵AB是直径,
∴∠ADB=90°,
又∵AB=AC,
∴BD=CD,∠BAD=∠CAD,
∵AO=BO,BD=CD,
∴OD∥AC,
∵DM⊥AC,
∴OD⊥MN,
又∵OD是半径,
∴MN是⊙O的切线;
(2)∵AB=AC,
∴∠ABC=∠ACB,
∵∠ABC+∠BAD=90°,∠ACB+∠CDM=90°,
∴∠BAD=∠CDM,
∵∠BDN=∠CDM,
∴∠BAD=∠BDN,
又∵∠N=∠N,
∴△BDN∽△DAN,
∴,
∴DN2=BN•AN=BN•(BN+AB)=BN•(BN+AC);
(3)∵BC=6,BD=CD,
∴BD=CD=3,
∵cosC==,
∴AC=5,
∴AB=5,
∴AD===4,
∵△BDN∽△DAN,
∴==,
∴BN=DN,DN=AN,
∴BN=(AN)=AN,
∵BN+AB=AN,
∴AN+5=AN
∴AN=,
∴DN=AN=.
28.【解答】解:(1)把C(﹣1,7),D(5,7)代入y=ax2+bx+12,
可得,
解得,
∴抛物线的解析式为y=﹣x2+4x+12.
(2)如图1中,过点E作EM⊥AB于M,过点D作DN⊥AB于N.
对于抛物线y=﹣x2+4x+12,令y=0,得到,x2﹣4x﹣12=0,解得x=﹣2或6,
∴A(﹣2,0),B(6,0),
∵D(5,7),
∴OA=2,DN=7,ON=5,AN=7
∵△CED的面积与△CAD的面积之比为1:7,
∴DE:AD=1:7,
∴AE:AD=6:7,
∵EM∥DN,
∵===,
∴==,
∴AM=EM=6,
∴E(4,6),
∴直线BE的解析式为y=﹣3x+18,
由,解得或,
∴F(1,15),
过点P作PQ∥y轴交BF于Q,设P(t,﹣t2+4t+12_)则Q(t,﹣3t+18),
∴PQ=﹣t2+4t+12﹣(﹣3t+18)=﹣t2+7t﹣6,
∵S△PBF=•(﹣t2+7t﹣6)•5=﹣(t﹣)2+,
∵﹣<0,
∴t=时,△BFP的面积最大,最大值为.
(3)对于抛物线y=﹣x2+4x+12,当y=16时,﹣x2+4x+12=16,
解得x1=x2=2,
当y=12时,﹣x2+4x+12=12,解得x=0或4,
观察图2可知:当0≤x≤2或2≤x≤4时,12≤y≤16,
∴m=0,n=2或m=2,n=4,
∴m﹣n=﹣2.