人教A版 (2019)必修 第一册5.1 任意角和弧度制教案
展开
这是一份人教A版 (2019)必修 第一册5.1 任意角和弧度制教案,共9页。
最新课程标准:了解任意角的概念和弧度制,能进行弧度与角度的互化,体会引入弧度制的必要性.
5.1.1 任意角
知识点一 角的概念
角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.
eq \x(状元随笔) (1)在画图时,常用带箭头的弧来表示旋转的方向.
(2)为了简单起见,在不引起混淆的前提下,“角α”或“∠α”可以简记成“α”
知识点二 角的表示
顶点:用O表示;
始边:用OA表示,用语言可表示为起始位置;
终边:用OB表示,用语言可表示为终止位置.
知识点三 角的分类
知识点四 象限角
在直角坐标系中研究角时,当角的顶点与原点重合,角的始边与x轴的非负半轴重合时,角的终边在第几象限,就说这个角是第几象限角,如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.
知识点五 终边相同的角
所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z},即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.
eq \x(状元随笔) (1)α为任意角,“k∈Z”这一条件不能漏.
(2)k·360 °与α中间用“+”连接,k·360 °-α可理解成k·360 °+(-α).
(3)当角的始边相同时,相等的角的终边一定相同,而终边相同的角不一定相等.终边相同的角有无数个,它们相差360 °的整数倍.终边不同则表示的角一定不同.
[教材解难]
象限角的集合表示.
[基础自测]
1.下列说法中正确的是( )
A.终边相同的角都相等 B.钝角是第二象限的角
C.第一象限的角是锐角 D.第四象限的角是负角
解析:终边相同的角不一定相等,第一象限角不一定是锐角,第四象限角可能为正角,也可能为负角,故选B.
答案:B
2.下列各角:-60°,126°,-63°,0°,99°,其中正角的个数是( )
A.1个 B.2个
C.3个 D.4个
解析:结合正角、负角和零角的概念可知,126°,99°是正角,-60°,-63°是负角,0°是零角,故选B.
答案:B
3.与30°角终边相同的角的集合是( )
A.{α|α=30°+k·360°,k∈ Z}
B.{α|α=-30°+k·360°,k∈Z}
C.{α|α=30°+k·180°,k∈Z}
D.{α|α=-30°+k·180°,k∈Z}
解析:由终边相同的角的定义可知与30°角终边相同的角的集合是{α|α=30°+k·360°,k∈Z}.
答案:A
4.2 019°是第________象限角.
解析:2 019°=360°×5+219°,180°
相关教案
这是一份数学5.4 三角函数的图象与性质教案及反思,共11页。
这是一份人教A版 (2019)5.4 三角函数的图象与性质教案,共11页。
这是一份高中数学人教A版 (2019)必修 第一册第五章 三角函数5.5 三角恒等变换教学设计,共9页。