高中人教A版 (2019)5.7 三角函数的应用教案
展开
这是一份高中人教A版 (2019)5.7 三角函数的应用教案,共14页。
最新课程标准:会用三角函数解决简单的实际问题,体会可以利用三角函数构建刻画事物周期变化的数学模型.
知识点一 函数y=Asin(ωx+φ),A>0,ω>0中各参数的物理意义
知识点二 三角函数模型应用的步骤
三角函数模型应用即建模问题,根据题意建立三角函数模型,再求出相应的三角函数在某点处的函数值,进而使实际问题得到解决.
步骤可记为:审读题意→建立三角函数式→根据题意求出某点的三角函数值→解决实际问题.
这里的关键是建立数学模型,一般先根据题意设出代表函数,再利用数据求出待定系数,然后写出具体的三角函数解析式.
知识点三 三角函数模型的拟合应用
我们可以利用搜集到的数据,做出相应的“散点图”,通过观察散点图并进行数据拟合,从而获得具体的函数模型,最后利用这个函数模型来解决相应的实际问题.
eq \x(状元随笔) 解答三角函数应用题应注意四点
(1)三角函数应用题的语言形式多为“文字语言、图形语言、符号语言”并用,阅读理解中要读懂题目所要反映的实际问题的背景,领悟其中的数学本质,列出等量或不等量的关系.
(2)在建立变量关系这一关键步骤上,要充分运用数形结合的思想、图形语言和符号语言并用的思维方式来打开思想解决问题.
(3)实际问题的背景往往比较复杂,而且需要综合应用多门学科的知识才能完成,因此,在应用数学知识解决实际问题时,应当注意从复杂的背景中抽取基本的数学关系,还要调动相关学科知识来帮助解决问题.
(4)实际问题通常涉及复杂的数据,因此往往需要用到计算机或计算器.
[教材解难]
教材P248思考
不对.因为这条船停止后还需0.4 h,若在P点停止,再经0.4 h后船驶出安全水深.
[基础自测]
1.商场人流量被定义为每分钟通过入口的人数,五一某商场的人流量满足函数F(t)=50+4sineq \f(t,2)(t≥0),则在下列哪个时间段内人流量是增加的( )
A.[0,5] B.[5,10]
C.[10,15] D.[15,20]
解析:由2kπ-eq \f(π,2)≤eq \f(t,2)≤2kπ+eq \f(π,2),k∈Z,知函数F(t)的增区间为[4kπ-π,4kπ+π],k∈Z.当k=1时,t∈[3π,5π],而[10,15]⊆[3π,5π],故选C.
答案:C
2.在两个弹簧上各挂一个质量分别为M1和M2的小球,它们做上下自由振动,已知它们在时间t(s)时离开平衡位置的位移s1(cm)和s2(cm)分别由下列两式确定:
s1=5sineq \b\lc\(\rc\)(\a\vs4\al\c1(2t+\f(π,6))),s2=5cseq \b\lc\(\rc\)(\a\vs4\al\c1(2t-\f(π,3))).
则在时间t=eq \f(2π,3)时,s1与s2的大小关系是( )
A.s1>s2 B.s11时,才对冲浪爱好者开放,
所以y=eq \f(1,2)cseq \f(π,6)t+1>1,cseq \f(π,6)t>0,2kπ-eq \f(π,2)
相关教案
这是一份人教A版 (2019)必修 第一册5.3 诱导公式教学设计,共10页。教案主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份高中数学人教A版 (2019)必修 第一册第五章 三角函数5.5 三角恒等变换教学设计,共9页。
这是一份高中数学人教A版 (2019)必修 第一册5.5 三角恒等变换教学设计,共13页。