数学人教B版 (2019)3.1.1 函数及其表示方法优秀第1课时教学设计
展开3.1 函数的概念与性质
3.1.1 函数及其表示方法
第1课时 函数的概念
1.函数的概念
思考:(1)有人认为“y=f(x)”表示的是“y等于f与x的乘积”,这种看法对吗?
(2)f(x)与f(a)有何区别与联系?
提示:(1)这种看法不对.
符号y=f(x)是“y是x的函数”的数学表示,应理解为x是自变量,f是对应关系,y是自变量的函数,当x允许取某一具体值时,相应的y值为与该自变量值对应的函数值.y=f(x)仅仅是函数符号,不表示“y等于f与x的乘积”.在研究函数时,除用符号f(x)外,还常用g(x),h(x)等来表示函数.
(2)f(x)与f(a)的区别与联系:f(a)表示当x=a时,函数f(x)的值,是一个常量,而f(x)是自变量x的函数,一般情况下,它是一个变量,f(a)是f(x)的一个特殊值,如一次函数f(x)=3x+4,当x=8时,f(8)=3×8+4=28是一个常数.
2.两个函数相同
一般地,如果两个函数的定义域相同,对应关系也相同(即对自变量的每一个值,两个函数对应的函数值都相等),则称这两个函数就是同一个函数.
1.思考辨析
(1)函数y=f(x)=x2,x∈A与u=f(t)=t2,t∈A表示的是同一个函数.( )
(2)函数y=f(x)=x2,x∈[0,2]与g(x)=2x,x∈[0,2]表示的是同一个函数.( )
(3)函数y=f(x)=x2,x∈[0,2]与h(x)=x2,x∈(0,2)表示同一个函数.( )
[提示] (1)两个函数定义域相同,对应关系也相同.
(2)两函数的对应关系不同.
(3)两函数的定义域不同.
[答案] (1)√ (2)× (3)×
2.函数y=eq \f(1,\r(x+1))的定义域是( )
A.[-1,+∞) B.[-1,0)
C.(-1,+∞) D.(-1,0)
C [由x+1>0得x>-1.
所以函数的定义域为(-1,+∞).]
3.若f(x)=eq \f(1,1-x2),则f(3)=________.
-eq \f(1,8) [f(3)=eq \f(1,1-9)=-eq \f(1,8).]
4.下表表示y是x的函数,则函数的值域是________.
{-1,0,1} [函数值只有-1,0,1三个数值,故值域为{-1,0,1}.]
【例1】 (1)下列四组函数,表示同一函数的是( )
A.f(x)=eq \r(x2),g(x)=x
B.f(x)=x,g(x)=eq \f(x2,x)
C.f(x)=eq \r(3,x3),g(x)=x
D.f(x)=x2,g(x)=(eq \r(x))4
(2)判断下列对应f是否为定义在集合A上的函数.
①A=R,B=R,对应法则f:y=eq \f(1,x2);
②A={1,2,3},B=R,f(1)=f(2)=3,f(3)=4;
③A={1,2,3},B={4,5,6},对应法则如图所示.
(1)C [选项A中,由于f(x)=eq \r(x2)=|x|,g(x)=x两函数对应法则不同,所以它们不是同一函数;
选项B中,由于f(x)=x的定义域为R,g(x)=eq \f(x2,x)的定义域为{x|x≠0},它们的定义域不相同,所以它们不是同一函数;
选项C中,f(x)=eq \r(3,x3)=x,g(x)=x的定义域和对应法则完全相同,所以它们是同一函数;
选项D中,f(x)=x2的定义域为R,g(x)=(eq \r(x))4=x2的定义域为[0,+∞),两个函数的定义域不相同,所以它们不是同一函数.]
(2)[解] ①A=R,B=R,对于集合A中的元素x=0,在对应法则f:y=eq \f(1,x2)的作用下,在集合B中没有元素与之对应,故所给对应不是定义在A上的函数.
②由f(1)=f(2)=3,f(3)=4,知集合A中的每一个元素在对应法则f的作用下,在集合B中都有唯一的元素与之对应,故所给对应是定义在A上的函数.
③集合A中的元素3在集合B中没有与之对应的元素,且集合A中的元素2在集合B中有两个元素(5和6)与之对应,故所给对应不是定义在A上的函数.
1.判断对应关系是否为函数的2个条件
(1)A,B必须是非空实数集.
(2)A中任意一元素在B中有且只有一个元素与之对应.
对应关系是“一对一”或“多对一”的是函数关系,“一对多”的不是函数关系.
2.判断函数相等的方法
(1)先看定义域,若定义域不同,则不相等;
(2)若定义域相同,再化简函数的解析式,看对应关系是否相同.
1.判断下列对应关系f是不是定义在集合A上的函数.
(1)A=N,B=N*,对应法则f:对集合A中的元素取绝对值与B中元素对应;
(2)A={-1,1,2,-2},B={1,4},对应法则f:x→y=x2,x∈A,y∈B;
(3)A={-1,1,2,-2},B={1,2,4},对应法则f:x→y=x2,x∈A,y∈B;
(4)A={三角形},B={x|x>0},对应法则f:对A中元素求面积与B中元素对应.
[解] (1)对于A中的元素0,在f的作用下得0,但0不属于B,即A中的元素0在B中没有元素与之对应,所以不是函数.
(2)对于A中的元素±1,在f的作用下与B中的1对应,A中的元素±2,在f的作用下与B中的4对应,所以满足A中的任一元素与B中唯一元素对应,是“多对一”的对应,故是函数.
(3)对于A中的任一元素,在对应关系f的作用下,B中都有唯一的元素与之对应,如±1对应1,±2对应4,所以是函数.
(4)集合A不是数集,故不是函数.
[探究问题]
1.已知函数的解析式,求其定义域时,能否可以对其先化简再求定义域?
提示:不可以.如f(x)=eq \f(x+1,x2-1).倘若先化简,则f(x)=eq \f(1,x-1),从而定义域与原函数不等价.
2.若函数y=f(x+1)的定义域是[1,2],这里的“[1,2]”是指谁的取值范围?函数y=f(x)的定义域是什么?
提示:[1,2]是自变量x的取值范围.
函数y=f(x)的定义域是x+1的范围[2,3].
【例2】 求下列函数的定义域:
(1)f(x)=2+eq \f(3,x-2);
(2)f(x)=(x-1)0+eq \r(\f(2,x+1));
(3)f(x)=eq \r(3-x)·eq \r(x-1);
(4)f(x)=eq \f(x+12,x+1)-eq \r(1-x).
[思路点拨] 要求函数的定义域,只需分母不为0,偶次方根中被开方数大于等于0即可.
[解] (1)当且仅当x-2≠0,
即x≠2时,
函数f(x)=2+eq \f(3,x-2)有意义,
所以这个函数的定义域为{x|x≠2}.
(2)函数有意义,当且仅当eq \b\lc\{\rc\ (\a\vs4\al\c1(x-1≠0,,\f(2,x+1)≥0,,x+1≠0,))
解得x>-1且x≠1,
所以这个函数的定义域为{x|x>-1且x≠1}.
(3)函数有意义,当且仅当eq \b\lc\{\rc\ (\a\vs4\al\c1(3-x≥0,,x-1≥0,))
解得1≤x≤3,
所以这个函数的定义域为{x|1≤x≤3}.
(4)要使函数有意义,自变量x的取值必须满足
eq \b\lc\{\rc\ (\a\vs4\al\c1(x+1≠0,,1-x≥0,))解得x≤1且x≠-1,
即函数定义域为{x|x≤1且x≠-1}.
(变结论)在本例(3)条件不变的前提下,求函数y=f(x+1)的定义域.
[解] 由1≤x+1≤3得0≤x≤2.
所以函数y=f(x+1)的定义域为[0,2].
求函数定义域的常用方法
1若fx是分式,则应考虑使分母不为零.
2若fx是偶次根式,则被开方数大于或等于零.
3若fx是指数幂,则函数的定义域是使幂运算有意义的实数集合.
4若fx是由几个式子构成的,则函数的定义域是几个部分定义域的交集.
5若fx是实际问题的解析式,则应符合实际问题,使实际问题有意义.
2.下列函数的定义域不是R的是( )
A.y=x+1 B.y=x2
C.y=eq \f(1,x) D.y=2x
C [A中为一次函数,B中为二次函数,D中为正比例函数,定义域都是R;C中为反比例函数,定义域是{x|x≠0},不是R.]
3.已知函数f(x)=eq \f(1,\r(2-x))的定义域为M,g(x)=eq \r(x+2)的定义域为N,则M∩N=( )
A.{x|x≥-2} B.{x|x<2}
C.{x|-2<x<2} D.{x|-2≤x<2}
D [由题意得M={x|x<2},N={x|x≥-2},所以M∩N={x|-2≤x<2}.]
【例3】 设f(x)=2x2+2,g(x)=eq \f(1,x+2).
(1)求f(2),f(a+3),g(a)+g(0)(a≠-2),g(f(2));
(2)求函数y=2x+1,x∈{1,2,3,4}的值域.
[思路点拨] (1)直接把自变量x的取值代入相应函数解析式求值即可;
(2)所有函数值的集合即为值域.
[解] (1)因为f(x)=2x2+2,
所以f(2)=2×22+2=10,
f(a+3)=2(a+3)2+2=2a2+12a+20.
因为g(x)=eq \f(1,x+2),
所以g(a)+g(0)=eq \f(1,a+2)+eq \f(1,0+2)=eq \f(1,a+2)+eq \f(1,2)(a≠-2).
g(f(2))=g(10)=eq \f(1,10+2)=eq \f(1,12).
(2)当x=1时,y=3;当x=2时,y=5;当x=3时,y=7;当x=4时,y=9.
所以函数y=2x+1,x∈{1,2,3,4}的值域为{3,5,7,9}.
1.函数求值的方法
(1)已知f(x)的表达式时,只需用a替换表达式中的x即得f(a)的值.
(2)求f(g(a))的值应遵循由里往外的原则.
2.求函数值域的常用方法
(1)观察法:通过对解析式的简单变形和观察,利用熟知的基本函数的值域,求出函数的值域.如:①一次函数f(x)=kx+b(k≠0)的值域是R;②反比例函数f(x)=eq \f(k,x)(k≠0)的值域是{y|y≠0};③二次函数f(x)=ax2+bx+c(a≠0),当a>0时,值域是yeq \b\lc\|\rc\ (\a\vs4\al\c1(y≥f-\f(b,2a)));当a<0时,值域是eq \b\lc\{\rc\}(\a\vs4\al\c1(y\b\lc\|\rc\ (\a\vs4\al\c1(y≤f\b\lc\(\rc\)(\a\vs4\al\c1(-\f(b,2a))))))).
(2)配方法,判别式法是求解二次函数型值域的常用方法.
(3)换元法:通过对函数的解析式进行适当换元,可将复杂的函数转化为简单的函数,从而求得函数的值域.
4.已知f(x)=x3+2x+3,求f(1)和f(f(-1))的值.
[解] f(1)=13+2×1+3=6;
f(f(-1))=f((-1)3+2×(-1)+3)=f(0)=3.
5.求函数y=1-x2的值域.
[解] 因为1-x2≤1,所以函数y=1-x2的值域为(-∞,1].
1.判断两个函数相同
函数的定义主要包括定义域和定义域到值域的对应法则,因此,判定两个函数是否相同时,就看定义域和对应法则是否完全一致,完全一致的两个函数才算相同.
2.对函数定义的再理解
(1)函数的定义域必须是非空实数集,因此定义域为空集的函数不存在.如y=eq \f(1,\r(1-x))+eq \r(x-3)就不是函数;集合A中的元素是实数,即A≠∅且A⊆R.
(2)函数定义中强调“三性”:任意性、存在性、唯一性,即对于非空数集A中的任意一个(任意性)元素x,都有(存在性)唯一(唯一性)的元素y与之对应.这三性只要有一个不满足,便不能构成函数.
(3)函数f(x)的定义域是非空数集A,但值域不一定是非空数集B,而是非空数集B的子集.
例如,对于从集合A=R到集合B=R的函数y=x2,值域是{y|y≥0},而不是R.
1.思考辨析
(1)函数的定义域和对应关系确定后,函数的值域也就确定了.( )
(2)函数值域中每一个数在定义域中一定只有一个数与之对应.( )
(3)函数的定义域和值域一定是无限集合.( )
[答案] (1)√ (2)× (3)×
2.下列函数中,与函数y=x相等的是( )
A.y=(eq \r(x))2 B.y=eq \r(x2)
C.y=|x| D.y=eq \r(3,x3)
D [函数y=x的定义域为R;y=(eq \r(x))2的定义域为[0,+∞);y=eq \r(x2)=|x|,对应关系不同;y=|x|对应关系不同;y=eq \r(3,x3)=x,且定义域为R.故选D.]
3.将函数y=eq \f(3,1-\r(1-x))的定义域为________.
(-∞,0)∪(0,1] [由eq \b\lc\{\rc\ (\a\vs4\al\c1(1-x≥0,,1-\r(1-x)≠0,))
解得x≤1且x≠0,
因此函数的定义域为(-∞,0)∪(0,1].]
4.已知函数f(x)=x+eq \f(1,x).
(1)求f(x)的定义域;
(2)求f(-1),f(2)的值;
(3)当a≠-1时,求f(a+1)的值.
[解] (1)要使函数f(x)有意义,必须使x≠0,
∴f(x)的定义域是(-∞,0)∪(0,+∞).
(2)f(-1)=-1+eq \f(1,-1)=-2,f(2)=2+eq \f(1,2)=eq \f(5,2).
(3)当a≠-1时,a+1≠0,
∴f(a+1)=a+1+eq \f(1,a+1).
学 习 目 标
核 心 素 养
1.进一步体会函数是描述变量之间的依赖关系的重要数学模型.能用集合与对应的语言刻画出函数,体会对应关系在刻画数学概念中的作用.(重点、难点)
2.了解构成函数的要素,会求一些简单函数的定义域和值域.(重点)
1.通过学习函数的概念,培养数学抽象素养.
2.借助函数定义域的求解,培养数学运算素养.
3.借助f(x)与f(a)的关系,培养逻辑推理素养.
定义
给定两个非空实数集A与B,以及对应关系f,如果对于集合A中的每一个实数x,按照对应关系f,在集合B中都有唯一确定的实数y=f(x)与x对应,则称f为定义在集合A上的一个函数,记作:y=f(x),x∈A,其中x称为自变量,y称为因变量
三要素
对应关系
y=f(x),x∈A
定义域
自变量x的取值的范围 (即数集A)
值域
所有函数值组成的集合{y∈B|y=f(x),x∈A}
x
x<2
2≤x≤3
x>3
y
-1
0
1
函数的概念
求函数的定义域
求函数值(值域)
高中数学人教A版 (2019)必修 第一册3.1 函数的概念及其表示学案设计: 这是一份高中数学人教A版 (2019)必修 第一册3.1 函数的概念及其表示学案设计,文件包含正文docx、答案docx等2份学案配套教学资源,其中学案共11页, 欢迎下载使用。
人教A版 (2019)3.1 函数的概念及其表示优质第1课时学案及答案: 这是一份人教A版 (2019)3.1 函数的概念及其表示优质第1课时学案及答案,共10页。学案主要包含了学习目标,自主学习,小试牛刀,经典例题,跟踪训练,当堂达标,课堂小结,参考答案等内容,欢迎下载使用。
人教A版 (2019)必修 第一册第二章 一元二次函数、方程和不等式本章综合与测试第1课时学案: 这是一份人教A版 (2019)必修 第一册第二章 一元二次函数、方程和不等式本章综合与测试第1课时学案,共7页。