终身会员
搜索
    上传资料 赚现金
    2020年高中数学新教材同步必修第一册 第3章 3.2.2 第2课时 奇偶性的应用 课件
    立即下载
    加入资料篮
    2020年高中数学新教材同步必修第一册 第3章 3.2.2 第2课时 奇偶性的应用 课件01
    2020年高中数学新教材同步必修第一册 第3章 3.2.2 第2课时 奇偶性的应用 课件02
    2020年高中数学新教材同步必修第一册 第3章 3.2.2 第2课时 奇偶性的应用 课件03
    2020年高中数学新教材同步必修第一册 第3章 3.2.2 第2课时 奇偶性的应用 课件04
    2020年高中数学新教材同步必修第一册 第3章 3.2.2 第2课时 奇偶性的应用 课件05
    2020年高中数学新教材同步必修第一册 第3章 3.2.2 第2课时 奇偶性的应用 课件06
    2020年高中数学新教材同步必修第一册 第3章 3.2.2 第2课时 奇偶性的应用 课件07
    2020年高中数学新教材同步必修第一册 第3章 3.2.2 第2课时 奇偶性的应用 课件08
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中数学人教A版 (2019)必修 第一册第三章 函数概念与性质3.2 函数的基本性质课文内容ppt课件

    展开
    这是一份高中数学人教A版 (2019)必修 第一册第三章 函数概念与性质3.2 函数的基本性质课文内容ppt课件,共33页。PPT课件主要包含了学习目标,内容索引,知识梳理,题型探究,随堂演练等内容,欢迎下载使用。

    XUEXIMUBIAO
    1.掌握用奇偶性求解析式的方法.2.理解奇偶性对单调性的影响并能用以比较大小、求最值和解不等式.
    NEIRONGSUOYIN
    知识点一 用奇偶性求解析式
    如果已知函数的奇偶性和一个区间[a,b]上的解析式,想求关于原点的对称区间[-b,-a]上的解析式,其解决思路为:(1)“求谁设谁”,即在哪个区间上求解析式,x就应在哪个区间上设.(2)要利用已知区间的解析式进行代入.(3)利用f(x)的奇偶性写出-f(x)或f(-x),从而解出f(x).
    知识点二 奇偶性与单调性
    若函数f(x)为奇函数,则f(x)在关于原点对称的两个区间[a,b]和[-b,-a]上具有相同的单调性;若函数f(x)为偶函数,则f(x)在关于原点对称的两个区间[a,b]和[-b,-a]上具有相反的单调性.
    1.若f(x)的定义域为R,且f(x)为奇函数,则f(0)=________.2.若f(x)为R上的奇函数,且在[0,+∞)上单调递减,则f(-1)________f(1).(填“>”“=”或“<”)
    YU XI XIAO CE ZI WO JIAN YAN
    解析 f(x)为R上的奇函数,且在[0,+∞)上单调递减,∴f(x)在R上单调递减,∴f(-1)>f(1).
    3.如果奇函数f(x)在区间[-7,-3]上是减函数,那么函数f(x)在区间[3,7]上是_____函数.
    解析 ∵f(x)为奇函数,∴f(x)在[3,7]上的单调性与[-7,-3]上一致,∴f(x)在[3,7]上是减函数.
    4.函数f(x)为偶函数,若x>0时,f(x)=x,则x<0时,f(x)=________.
    解析 方法一 令x<0,则-x>0,∴f(-x)=-x,又∵f(x)为偶函数,∴f(-x)=f(x),∴f(x)=-x(x<0).方法二 利用图象(图略)可得x<0时,f(x)=-x.
    命题角度1 求对称区间上的解析式例1 函数f(x)是定义域为R的奇函数,当x>0时,f(x)=-x+1,求当x<0时,f(x)的解析式.
    一、利用函数的奇偶性求解析式
    解 设x<0,则-x>0,∴f(-x)=-(-x)+1=x+1,又∵函数f(x)是定义域为R的奇函数,∴当x<0时,f(x)=-f(-x)=-x-1.
    求给定哪个区间的解析式就设这个区间上的变量为x,然后把x转化为-x,此时-x成为了已知区间上的解析式中的变量,通过应用奇函数或偶函数的定义,适当推导,即可得所求区间上的解析式.
    跟踪训练1 已知f(x)是R上的奇函数,且当x∈(0,+∞)时,f(x)=x(1+x),求f(x)的解析式.
    解 因为x∈(-∞,0)时,-x∈(0,+∞),所以f(-x)=-x[1+(-x)]=x(x-1).因为f(x)是R上的奇函数,所以f(x)=-f(-x)=-x(x-1),x∈(-∞,0).f(0)=0.
    命题角度2 构造方程组求解析式
    解 ∵f(x)是偶函数,g(x)是奇函数,∴f(-x)=f(x),g(-x)=-g(x),
    跟踪训练2 设f(x)是偶函数,g(x)是奇函数,且f(x)+g(x)=x2+2x,求函数f(x),g(x)的解析式.
    解 ∵f(x)是偶函数,g(x)是奇函数,∴f(-x)=f(x),g(-x)=-g(x),由f(x)+g(x)=2x+x2. ①用-x代替x,得f(-x)+g(-x)=-2x+(-x)2,∴f(x)-g(x)=-2x+x2, ②(①+②)÷2,得f(x)=x2;(①-②)÷2,得g(x)=2x.
    二、利用函数的奇偶性与单调性比较大小
    例3 设偶函数f(x)的定义域为R,当x∈[0,+∞)时,f(x)是增函数,则f(-2),f(π),f(-3)的大小关系是A.f(π)>f(-3)>f(-2)B.f(π)>f(-2)>f(-3)C.f(π)解析 因为函数f(x)为R上的偶函数,所以f(-3)=f(3),f(-2)=f(2).又当x∈[0,+∞)时,f(x)是增函数,且π>3>2,所以f(π)>f(3)>f(2),故f(π)>f(-3)>f(-2).
    利用函数的奇偶性与单调性比较大小(1)自变量在同一单调区间上,直接利用函数的单调性比较大小;(2)自变量不在同一单调区间上,需利用函数的奇偶性把自变量转化到同一单调区间上,然后利用单调性比较大小.
    跟踪训练3 (1)已知偶函数f(x)在[0,+∞)上单调递减,则f(1)和f(-10)的大小关系为A.f(1)>f(-10) B.f(1)解析 ∵f(x)是偶函数,且在[0,+∞)上单调递减,∴f(-10)=f(10)(2)定义在R上的奇函数f(x)为增函数,偶函数g(x)在区间[0,+∞)上的图象与f(x)的图象重合,设a>b>0,下列不等式中成立的有___________.(填序号)①f(a)>f(-b);②f(-a)>f(b);③g(a)>g(-b);④g(-a)f(-a).
    解析 f(x)为R上奇函数,增函数,且a>b>0,∴f(a)>f(b)>f(0)=0,又-a<-b<0,∴f(-a)f(b)>0>f(-b)>f(-a),∴①正确,②错误.x∈[0,+∞)时,g(x)=f(x),∴g(x)在[0,+∞)上单调递增,∴g(-a)=g(a)>g(b)=g(-b),∴③正确,④错误.又g(-a)=g(a)=f(a)>f(-a),∴⑤正确.
    三、利用函数的奇偶性与单调性解不等式
    {x|-33}
    解析 ∵f(x)是定义在R上的偶函数,且在区间(-∞,0)上是增函数,∴f(x)在区间(0,+∞)上是减函数.∴f(3)=f(-3)=0.当x>0时,由f(x)<0,解得x>3;当x<0时,由f(x)>0,解得-33}.
    解析 由于f(x)为偶函数,且在[0,+∞)上单调递增,
    利用函数奇偶性与单调性解不等式,一般有两类(1)利用图象解不等式;(2)转化为简单不等式求解.①利用已知条件,结合函数的奇偶性,把已知不等式转化为f(x1)f(x2)的形式;②根据奇函数在对称区间上的单调性一致,偶函数在对称区间上的单调性相反,脱掉不等式中的“f”转化为简单不等式(组)求解.
    跟踪训练4 设定义在[-2,2]上的奇函数f(x)在区间[0,2]上是减函数,若f(1-m)解 因为f(x)是奇函数且f(x)在[0,2]上是减函数,所以f(x)在[-2,2]上是减函数.
    1.若函数f(x)是R上的偶函数,且在区间[0,+∞)上是增函数,则下列关系成立的是A.f(-3)>f(0)>f(1)B.f(-3)>f(1)>f(0)C.f(1)>f(0)>f(-3)D.f(1)>f(-3)>f(0)
    解析 ∵f(-3)=f(3),且f(x)在区间[0,+∞)上是增函数,∴f(-3)>f(1)>f(0).
    2.定义在R上的偶函数f(x)在[0,+∞)上是增函数,若f(a)bC.|a|<|b| D.0≤ab≥0
    3.已知函数f(x)为偶函数,且当x<0时,f(x)=x+1,则x>0时,f(x)=________.
    解析 当x>0时,-x<0,∴f(-x)=-x+1,又f(x)为偶函数,∴f(x)=-x+1.
    4.奇函数f(x)在区间[0,+∞)上的图象如图,则函数f(x)的增区间为_____________________.
    (-∞,-1],[1,+∞)
    解析 奇函数的图象关于原点对称,可知函数f(x)的增区间为(-∞,-1],[1,+∞).
    5.已知偶函数f(x)在[0,+∞)上单调递减,f(2)=0.若f(x-1)>0,则x的取值范围是________.
    解析 因为f(x)是偶函数,所以f(x-1)=f(|x-1|).又因为f(2)=0,所以f(x-1)>0可化为f(|x-1|)>f(2).又因为f(x)在[0,+∞)上单调递减,所以|x-1|<2,解得-2KE TANG XIAO JIE
    1.知识清单:(1)利用奇偶性,求函数的解析式.(2)利用奇偶性和单调性比较大小、解不等式.2.方法归纳:利用函数的奇偶性、单调性画出函数的简图,利用图象解不等式和比较大小,体现了数形结合思想和直观想象数学素养.3.常见误区:解不等式易忽视函数的定义域.
    相关课件

    高中数学人教A版 (2019)必修 第一册3.2 函数的基本性质课文内容ppt课件: 这是一份高中数学人教A版 (2019)必修 第一册3.2 函数的基本性质课文内容ppt课件,共29页。PPT课件主要包含了目标认知,奇函数,图3-2-9,x2-3x,角度一比较大小问题,角度二不等式问题,图3-2-10等内容,欢迎下载使用。

    高中数学湘教版(2019)必修 第一册3.2 函数的基本性质课文配套课件ppt: 这是一份高中数学湘教版(2019)必修 第一册3.2 函数的基本性质课文配套课件ppt,文件包含湘教版高中数学必修第一册第3章32322第2课时奇偶性的应用课件ppt、湘教版高中数学必修第一册第3章32322第2课时奇偶性的应用学案doc、湘教版高中数学必修第一册课后素养落实24奇偶性的应用含答案doc等3份课件配套教学资源,其中PPT共41页, 欢迎下载使用。

    高中数学人教A版 (2019)必修 第一册3.2 函数的基本性质说课课件ppt: 这是一份高中数学人教A版 (2019)必修 第一册3.2 函数的基本性质说课课件ppt,文件包含322第2课时奇偶性的应用pptx、322第2课时奇偶性的应用docx等2份课件配套教学资源,其中PPT共58页, 欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map