终身会员
搜索
    上传资料 赚现金
    新人教A版必修第一册教学讲义:5-5-1-3第3课时 两角和与差的正切公式(含答案)
    立即下载
    加入资料篮
    新人教A版必修第一册教学讲义:5-5-1-3第3课时 两角和与差的正切公式(含答案)01
    新人教A版必修第一册教学讲义:5-5-1-3第3课时 两角和与差的正切公式(含答案)02
    新人教A版必修第一册教学讲义:5-5-1-3第3课时 两角和与差的正切公式(含答案)03
    还剩12页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中人教A版 (2019)5.5 三角恒等变换一等奖第3课时教案

    展开
    这是一份高中人教A版 (2019)5.5 三角恒等变换一等奖第3课时教案,共15页。

    第3课时 两角和与差的正切公式








    1.能利用两角和与差的正弦、余弦公式推导出两角和与差的正切公式.


    2.能灵活运用两角和与差的正切公式进行化简、求值、证明等,掌握公式的正向、逆向及变形应用.





    两角和与差的正切公式











    温馨提示:在应用两角和与差的正切公式时,只要tanα,tanβ,tan(α+β)(或tan(α-β))中任一个的值不存在,就不能使用两角和(或差)的正切公式解决问题,应改用诱导公式或其他方法解题.如化简taneq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)-β)),因为taneq \f(π,2)的值不存在,所以不能利用公式T(α-β)进行化简,应改用诱导公式来化简,即taneq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)-β))=eq \f(sin\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)-β)),cs\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)-β)))=eq \f(csβ,sinβ).





    判断正误(正确的打“√”,错误的打“×”)


    (1)tanα·tanβ,tanα+tanβ,tan(α+β)三者知二可表示或求出第三个.( )


    (2)taneq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)+\f(π,3)))能根据公式tan(α+β)直接展开.( )


    (3)存在α,β∈R,使tan(α+β)=tanα+tanβ成立.( )


    [答案] (1)√ (2)× (3)√








    题型一 正切公式的正用


    【典例1】 (1)求值:tan(-75°);


    (2)已知csα=eq \f(4,5),α∈(0,π),tan(α-β)=eq \f(1,2),求tanβ.


    [思路导引] (1)75°=45°+30°,利用两角和的正切公式求解;(2)由已知可求得sinα的值,则可求得tanα,因为β=α-(α-β),所以tanβ=tan[α-(α-β)],再利用两角差的正切公式求解.


    [解] (1)tan75°=tan(45°+30°)


    =eq \f(tan45°+tan30°,1-tan45°tan30°)=eq \f(1+\f(\r(3),3),1-\f(\r(3),3))=eq \f(3+\r(3),3-\r(3))


    =eq \f(12+6\r(3),6)=2+eq \r(3),


    tan(-75°)=-tan75°=-2-eq \r(3).


    (2)∵csα=eq \f(4,5)>0,α∈(0,π),∴sinα>0.


    ∴sinα=eq \r(1-cs2α)= eq \r(1-\b\lc\(\rc\)(\a\vs4\al\c1(\f(4,5)))2)=eq \f(3,5),


    ∴tanα=eq \f(sinα,csα)=eq \f(\f(3,5),\f(4,5))=eq \f(3,4).


    ∴tanβ=tan[α-(α-β)]


    =eq \f(tanα-tanα-β,1+tanα·tanα-β)=eq \f(\f(3,4)-\f(1,2),1+\f(3,4)×\f(1,2))=eq \f(2,11).


    [变式] 本例(2)中,其他条件不变,求tan(2α-β).


    [解] tan(2α-β)=tan[α+(α-β)]


    =eq \f(tanα+tanα-β,1-tanα·tanα-β)=eq \f(\f(3,4)+\f(1,2),1-\f(3,4)×\f(1,2))=2.

















    (1)利用公式T(α+β)求角的步骤:


    ①计算待求角的正切值.


    ②缩小待求角的范围,特别注意隐含的信息.


    ③根据角的范围及三角函数值确定角.


    (2)注意用已知角来表示未知角.





    [针对训练]


    1.已知tanα=2,tanβ=-eq \f(1,3),其中0<α

    (1)tan(α-β);


    (2)α+β的值.


    [解] (1)因为tanα=2,tanβ=-eq \f(1,3),


    所以tan(α-β)=eq \f(tanα-tanβ,1+tanαtanβ)=eq \f(2+\f(1,3),1-\f(2,3))=7.


    (2)因为tan(α+β)=eq \f(tanα+tanβ,1-tanαtanβ)=eq \f(2-\f(1,3),1+\f(2,3))=1,


    又因为0<α

    所以eq \f(π,2)<α+β

    题型二 正切公式的逆用


    【典例2】 求值:(1)eq \f(tan74°+tan76°,1-tan74°tan76°);


    (2)eq \f(\r(3)-tan15°,1+\r(3)tan15°).


    [思路导引] (1)逆用两角和的正切公式;(2)将eq \r(3)换成tan60°,再逆用两角差的正切公式.


    [解] (1)原式=tan(74°+76°)=tan150°=-eq \f(\r(3),3).


    (2)原式=eq \f(tan60°-tan15°,1+tan60°tan15°)


    =tan(60°-15°)=tan45°=1.














    化简求值中要注意“特殊值”的代换和应用


    当所要化简(求值)的式子中出现特殊的数值“1”、“eq \r(3)”时,要考虑用这些特殊值所对应的特殊角的正切值去代换,如“1=taneq \f(π,4)”,“eq \r(3)=taneq \f(π,3)”,这样可以构造出公式的形式,从而可以进行化简和求值.





    [针对训练]


    2.求值:(1)eq \f(cs75°-sin75°,cs75°+sin75°);


    (2)eq \f(1-tan27°tan33°,tan27°+tan33°).


    [解] (1)原式=eq \f(1-tan75°,1+tan75°)


    =eq \f(tan45°-tan75°,1+tan45°tan75°)=tan(45°-75°)


    =tan(-30°)=-tan30°=-eq \f(\r(3),3).


    (2)原式=eq \f(1,tan27°+33°)=eq \f(1,tan60°)=eq \f(\r(3),3).








    题型三 正切公式的变形应用


    【典例3】 (1)化简:tan23°+tan37°+eq \r(3)tan23°tan37°;


    (2)若锐角α,β满足(1+eq \r(3)tanα)(1+eq \r(3)tanβ)=4,求α+β的值.


    [思路导引] (1)利用23°+37°=60°及两角和的正切公式将tan(23°+37°)展开变形即可求解;(2)将所给关系式的左边展开,逆用两角和的正切公式求出tan(α+β).


    [解] (1)解法一:tan23°+tan37°+eq \r(3)tan23°tan37°


    =tan(23°+37°)(1-tan23°tan37°)+eq \r(3)tan23°tan37°


    =tan60°(1-tan23°tan37°)+eq \r(3)tan23°tan37°=eq \r(3).


    解法二:∵tan(23°+37°)=eq \f(tan23°+tan37°,1-tan23°tan37°),


    ∴eq \r(3)=eq \f(tan23°+tan37°,1-tan23°tan37°),


    ∴eq \r(3)-eq \r(3)tan23°tan37°=tan23°+tan37°,


    ∴tan23°+tan37°+eq \r(3)tan23°tan37°=eq \r(3).


    (2)∵(1+eq \r(3)tanα)(1+eq \r(3)tanβ)


    =1+eq \r(3)(tanα+tanβ)+3tanαtanβ=4,


    ∴tanα+tanβ=eq \r(3)(1-tanαtanβ),


    ∴tan(α+β)=eq \f(tanα+tanβ,1-tanαtanβ)=eq \r(3).


    又∵α,β均为锐角,∴0°<α+β<180°,


    ∴α+β=60°.











    T(α±β)可变形为如下形式:


    ①tanα±tanβ=tan(α±β)(1∓tanαtanβ)或②1∓tanαtanβ=eq \f(tanα±tanβ,tanα±β).当α±β为特殊角时,常考虑使用变形①,遇到1与切的乘积的和(或差)时常用变形②.





    [针对训练]


    3.在△ABC中,tanA+tanB+eq \r(3)=eq \r(3)tanAtanB,则C等于( )


    A.eq \f(π,3) B.eq \f(2π,3) C.eq \f(π,6) D.eq \f(π,4)


    [解析] 因为tan(A+B)=eq \f(tanA+tanB,1-tanAtanB),


    故tan(A+B)+eq \r(3)=eq \f(tanA+tanB,1-tanAtanB)+eq \r(3)


    =eq \f(tanA+tanB+\r(3)-\r(3)tanAtanB,1-tanAtanB);


    根据题意可知,tanA+tanB+eq \r(3)-eq \r(3)tanAtanB=0,


    故tan(A+B)+eq \r(3)=0,因为C=π-A-B,故tan(A+B)=-tanC,所以tanC=eq \r(3),因为在三角形中0

    [答案] A


    课堂归纳小结


    1.公式T(α±β)的适用范围


    由正切函数的定义可知α、β、α+β(或α-β)的终边不能落在y轴上,即不为kπ+eq \f(π,2)(k∈Z).


    2.公式T(α±β)的逆用


    一方面要熟记公式的结构,另一方面要注意常值代换.


    如taneq \f(π,4)=1,taneq \f(π,6)=eq \f(\r(3),3),taneq \f(π,3)=eq \r(3)等.


    要特别注意taneq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,4)+α))=eq \f(1+tanα,1-tanα),taneq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,4)-α))=eq \f(1-tanα,1+tanα).


    3.公式T(α±β)的变形应用


    只要见到tanα±tanβ,tanαtanβ时,要有灵活应用公式T(α±β)的意识,就不难想到解题思路.





    1.若tanα=3,tanβ=eq \f(4,3),则tan(α-β)等于( )


    A.eq \f(1,3) B.-eq \f(1,3)


    C.3 D.-3


    [解析] tan(α-β)=eq \f(tanα-tanβ,1+tanαtanβ)=eq \f(1,3).


    [答案] A


    2.已知α∈eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2),π)),sinα=eq \f(3,5),则taneq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,4)))=( )


    A.eq \f(1,7) B.7


    C.-eq \f(1,7) D.-7


    [解析] sinα=eq \f(3,5)⇒csα=-eq \f(4,5)⇒tanα=-eq \f(3,4).


    ∴taneq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,4)))=eq \f(tanα+tan\f(π,4),1-tanαtan\f(π,4))=eq \f(-\f(3,4)+1,1--\f(3,4)×1)=eq \f(1,7).


    [答案] A


    3.eq \f(1+tan15°,1-tan15°)=________.


    [解析] eq \f(1+tan15°,1-tan15°)=eq \f(tan45°+tan15°,1-tan45°·tan15°)=tan60°=eq \r(3).


    [答案] eq \r(3)


    4.tan19°+tan26°+tan19°tan26°=________.


    [解析] tan45°=tan(19°+26°)=eq \f(tan19°+tan26°,1-tan19°tan26°)=1.


    所以tan19°+tan26°=1-tan19°tan26°,


    则tan19°+tan26°+tan19°tan26°


    =1-tan19°tan26°+tan19°tan26°=1.


    [答案] 1


    5.若eq \f(sinα+csα,sinα-csα)=3,tan(α-β)=2,则tan(β-2α)=________.


    [解析] ∵eq \f(sinα+csα,sinα-csα)=eq \f(tanα+1,tanα-1)=3,


    ∴tanα=2.


    又tan(α-β)=2,


    ∴tan(β-2α)=tan[(β-α)-α]


    =-tan[(α-β)+α]


    =-eq \f(tanα-β+tanα,1-tanα-β·tanα)=eq \f(4,3).


    [答案] eq \f(4,3)


    课后作业(五十)


    复习巩固


    一、选择题


    1.设sinα=eq \f(3,5)eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)<α<π)),tan(π-β)=eq \f(1,2),则tan(α-β)的值为( )


    A.-eq \f(2,7) B.-eq \f(2,5) C.-eq \f(2,11) D.-eq \f(11,2)


    [解析] ∵sinα=eq \f(3,5)eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)<α<π)),∴tanα=-eq \f(3,4).


    ∵tan(π-β)=eq \f(1,2),∴tanβ=-eq \f(1,2).


    ∴tan(α-β)=eq \f(tanα-tanβ,1+tanαtanβ)=-eq \f(2,11).


    [答案] C


    2.eq \f(tan10°+tan50°+tan120°,tan10°tan50°)的值等于( )


    A.-1 B.1 C.eq \r(3) D.-eq \r(3)


    [解析] 因为tan60°=tan(10°+50°)=eq \f(tan10°+tan50°,1-tan10°tan50°),


    所以tan10°+tan50°=tan60°-tan60°tan10°tan50°.


    所以原式


    =eq \f(tan60°-tan60°tan10°tan50°+tan120°,tan10°tan50°)


    =-eq \r(3).


    [答案] D


    3.已知tan(α+β)=eq \f(3,5),taneq \b\lc\(\rc\)(\a\vs4\al\c1(β-\f(π,4)))=eq \f(1,4),那么taneq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,4)))等于( )


    A.eq \f(13,18) B.eq \f(13,23) C.eq \f(7,23) D.eq \f(1,6)


    [解析] taneq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,4)))=taneq \b\lc\[\rc\](\a\vs4\al\c1(α+β-\b\lc\(\rc\)(\a\vs4\al\c1(β-\f(π,4)))))


    =eq \f(\f(3,5)-\f(1,4),1+\f(3,5)×\f(1,4))=eq \f(7,23).


    [答案] C


    4.若α+β=eq \f(3π,4),则(1-tanα)(1-tanβ)的值为( )


    A.eq \f(1,2) B.1 C.eq \f(3,2) D.2


    [解析] ∵tanα+tanβ=tan(α+β)(1-tanαtanβ)


    =taneq \f(3π,4)(1-tanαtanβ)=tanαtanβ-1,


    ∴(1-tanα)(1-tanβ)=1+tanαtanβ-(tanα+tanβ)=2.


    [答案] D


    5.已知tanα,tanβ是方程x2+3eq \r(3)x+4=0的两根,且-eq \f(π,2)<α

    A.eq \f(π,3) B.-eq \f(2π,3)


    C.eq \f(π,3)或-eq \f(2π,3) D.-eq \f(π,3)或eq \f(2π,3)


    [解析] 由一元二次方程根与系数的关系得tanα+tanβ=-3eq \r(3),tanα·tanβ=4,∴tanα<0,tanβ<0.


    ∴tan(α+β)=eq \f(tanα+tanβ,1-tanαtanβ)=eq \f(-3\r(3),1-4)=eq \r(3).


    又∵-eq \f(π,2)<α

    ∴-π<α+β<0,∴α+β=-eq \f(2π,3).


    [答案] B





    二、填空题


    6.eq \f(1+tan12°tan72°,tan12°-tan72°)=________.


    [解析] eq \f(1+tan12°tan72°,tan12°-tan72°)=-eq \f(1,tan72°-12°)=-eq \f(\r(3),3).


    [答案] -eq \f(\r(3),3)


    7.tan70°+tan50°-eq \r(3)tan50°tan70°=__________.


    [解析] ∵tan70°+tan50°=tan120°(1-tan50°·tan70°)=-eq \r(3)+eq \r(3)tan50°·tan70°,∴原式=-eq \r(3)+eq \r(3)tan50°·tan70°-eq \r(3)tan50°·tan70°=-eq \r(3).


    [答案] -eq \r(3)


    8.如下图,在△ABC中,AD⊥BC,D为垂足,AD在△ABC的外部,且BD∶CD∶AD=2∶3∶6,则tan∠BAC=________.





    [解析] 不妨设BD=2,CD=3,AD=6,则tan∠ABD=3,tan∠ACD=2,又∵∠BAC=∠ABD-∠ACD,∴tan∠BAC=eq \f(tan∠ABD-tan∠ACD,1+tan∠ABD·tan∠ACD)=eq \f(3-2,1+3×2)=eq \f(1,7).


    [答案] eq \f(1,7)


    三、解答题


    9.已知taneq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,12)+α))=eq \r(2),taneq \b\lc\(\rc\)(\a\vs4\al\c1(β-\f(π,3)))=2eq \r(2),求:


    (1)taneq \b\lc\(\rc\)(\a\vs4\al\c1(α+β-\f(π,4)))的值;


    (2)tan(α+β)的值.


    [解] (1)taneq \b\lc\(\rc\)(\a\vs4\al\c1(α+β-\f(π,4)))=taneq \b\lc\[\rc\](\a\vs4\al\c1(\b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,12)))+\b\lc\(\rc\)(\a\vs4\al\c1(β-\f(π,3)))))


    =eq \f(tan\b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,12)))+tan\b\lc\(\rc\)(\a\vs4\al\c1(β-\f(π,3))),1-tan\b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,12)))tan\b\lc\(\rc\)(\a\vs4\al\c1(β-\f(π,3))))=eq \f(\r(2)+2\r(2),1-\r(2)×2\r(2))=-eq \r(2).


    (2)tan(α+β)=taneq \b\lc\[\rc\](\a\vs4\al\c1(\b\lc\(\rc\)(\a\vs4\al\c1(α+β-\f(π,4)))+\f(π,4)))


    =eq \f(tan\b\lc\(\rc\)(\a\vs4\al\c1(α+β-\f(π,4)))+tan\f(π,4),1-tan\b\lc\(\rc\)(\a\vs4\al\c1(α+β-\f(π,4)))tan\f(π,4))=eq \f(-\r(2)+1,1+\r(2)×1)=2eq \r(2)-3.


    10.已知tan(α-β)=eq \f(1,2),tanβ=-eq \f(1,7),α,β∈(0,π),求2α-β的值.


    [解] tanα=tan[(α-β)+β]=eq \f(tanα-β+tanβ,1-tanα-βtanβ)=eq \f(1,3),


    又α∈(0,π),所以α∈eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(π,4))).


    tan(2α-β)=tan[α+(α-β)]


    =eq \f(tanα+tanα-β,1-tanαtanα-β)=eq \f(\f(1,3)+\f(1,2),1-\f(1,3)×\f(1,2))=1,


    而tanβ=-eq \f(1,7),β∈(0,π),所以β∈eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2),π)),


    所以2α-β∈(-π,0),2α-β=-eq \f(3π,4).


    综合运用


    11.已知tanα和taneq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,4)-α))是方程ax2+bx+c=0的两根,则a,b,c的关系是( )


    A.b=a+c B.2b=a+c


    C.c=a+b D.c=ab


    [解析] 由根与系数的关系得:


    tanα+taneq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,4)-α))=-eq \f(b,a),tanαtaneq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,4)-α))=eq \f(c,a).


    taneq \b\lc\[\rc\](\a\vs4\al\c1(α+\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,4)-α))))=eq \f(tanα+tan\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,4)-α)),1-tanαtan\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,4)-α)))


    =eq \f(-\f(b,a),1-\f(c,a))=1,得c=a+b.


    [答案] C


    12.(1+tan1°)(1+tan2°)·…·(1+tan44°)(1+tan45°)的值为( )


    A.222 B.223 C.224 D.225


    [解析] ∵(1+tan1°)(1+tan44°)=1+tan1°+tan44°+tan1°tan44°


    =1+tan(1°+44°)(1-tan1°tan44°)+tan1°·tan44°


    =1+1-tan1°tan44°+tan1°tan44°=2,


    同理(1+tan2°)(1+tan43°)=(1+tan3°)(1+tan42°)


    =…=(1+tan22°)(1+tan23°)=2


    又1+tan45°=2


    ∴原式=223.故选B.


    [答案] B


    13.已知α为锐角,且tan(α+β)=3,tan(α-β)=2,则α等于________.


    [解析] 因为tan2α=tan[(α+β)+(α-β)]


    =eq \f(tanα+β+tanα-β,1-tanα+βtanα-β)=eq \f(3+2,1-3×2)=-1.


    又因为α为锐角,2α∈(0,π).所以2α=eq \f(3,4)π,α=eq \f(3,8)π.


    [答案] eq \f(3,8)π


    14.如果tanα,tanβ是方程x2-3x-3=0的两根,则eq \f(sinα+β,csα-β)=________.


    [解析] eq \f(sinα+β,csα-β)=eq \f(sinαcsβ+csαsinβ,csαcsβ+sinαsinβ)


    =eq \f(tanα+tanβ,1+tanαtanβ)=eq \f(3,1+-3)=-eq \f(3,2).


    [答案] -eq \f(3,2)





    15.如下图所示,在平面直角坐标系xOy中,以Ox轴为始边作两个锐角α,β,它们的终边分别与单位圆相交于A,B两点,已知A,B的横坐标分别为eq \f(\r(2),10),eq \f(2\r(5),5).





    (1)求tan(α+β)的值;


    (2)求α+2β的值.


    [解] 由条件得csα=eq \f(\r(2),10),csβ=eq \f(2\r(5),5).


    ∵α,β为锐角,∴sinα=eq \r(1-cs2α)=eq \f(7\r(2),10),


    sinβ=eq \r(1-cs2β)=eq \f(\r(5),5).





    因此tanα=eq \f(sinα,csα)=7,tanβ=eq \f(sinβ,csβ)=eq \f(1,2).


    (1)tan(α+β)=eq \f(tanα+tanβ,1-tanαtanβ)=eq \f(7+\f(1,2),1-7×\f(1,2))=-3.


    (2)∵tan2β=tan(β+β)=eq \f(2tanβ,1-tan2β)=eq \f(2×\f(1,2),1-\b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))2)=eq \f(4,3),


    ∴tan(α+2β)=eq \f(tanα+tan2β,1-tanαtan2β)=eq \f(7+\f(4,3),1-7×\f(4,3))=-1,


    又∵α,β为锐角,∴0<α+2β

    公式
    简记符号
    使用条件
    tan(α+β)=eq \f(tanα+tanβ,1-tanαtanβ)
    T(α+β)
    α,β,α+β≠kπ+eq \f(π,2)


    (k∈Z)
    tan(α-β)=eq \f(tanα-tanβ,1+tanαtanβ)
    T(α-β)
    α,β,α-β≠kπ+eq \f(π,2)


    (k∈Z)
    相关教案

    高中数学人教A版 (2019)必修 第一册第五章 三角函数5.5 三角恒等变换第3课时教学设计: 这是一份高中数学人教A版 (2019)必修 第一册第五章 三角函数5.5 三角恒等变换第3课时教学设计,共9页。

    高中数学人教版新课标A必修43.1 两角和与差的正弦、余弦和正切公式教学设计: 这是一份高中数学人教版新课标A必修43.1 两角和与差的正弦、余弦和正切公式教学设计

    人教A版 (2019)必修 第一册5.5 三角恒等变换第3课时教学设计及反思: 这是一份人教A版 (2019)必修 第一册5.5 三角恒等变换第3课时教学设计及反思,共5页。教案主要包含了教学目标,教学重难点,教学过程,课外作业等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        新人教A版必修第一册教学讲义:5-5-1-3第3课时 两角和与差的正切公式(含答案)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map