高中5.6 函数 y=Asin( ωx + φ)精品当堂达标检测题
展开复习巩固
一、选择题
1.要得到函数y=sinx的图象,只需将函数y=sin(x-eq \f(π,3))的图象( )
A.向左平移eq \f(π,3)个单位长度
B.向右平移eq \f(π,3)个单位长度
C.向左平移eq \f(2π,3)个单位长度
D.向右平移eq \f(2π,3)个单位长度
[解析] 根据图象左、右平移的条件很容易得出答案应选A.
[答案] A
2.将函数y=sinx的图象上所有的点向右平移eq \f(π,10)个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是( )
A.y=sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x-\f(π,10))) B.y=sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x-\f(π,5)))
C.y=sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)x-\f(π,10))) D.y=sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)x-\f(π,20)))
[解析] 函数y=sinx的图象上的点向右平移eq \f(π,10)个单位长度可得函数y=sineq \b\lc\(\rc\)(\a\vs4\al\c1(x-\f(π,10)))的图象;横坐标伸长到原来的2倍(纵坐标不变)可得函数y=sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)x-\f(π,10)))的图象,所以所求函数的解析式是y=sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)x-\f(π,10))).
[答案] C
3.把函数y=sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x-\f(π,4)))的图象向右平移eq \f(π,8)个单位,所得图象对应的函数是( )
A.非奇非偶函数
B.既是奇函数又是偶函数
C.奇函数
D.偶函数
[解析] y=sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x-\f(π,4)))图象向右平移eq \f(π,8)个单位得到y=sineq \b\lc\[\rc\](\a\vs4\al\c1(2\b\lc\(\rc\)(\a\vs4\al\c1(x-\f(π,8)))-\f(π,4)))=sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x-\f(π,2)))=-cs2x的图象,y=-cs2x是偶函数.
[答案] D
4.为了得到函数y=2sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(x,3)+\f(π,6))),x∈R的图象,只需把函数y=2sinx,x∈R的图象上所有的点( )
A.向左平移eq \f(π,6)个单位长度,再把所得各点的横坐标缩短到原来的eq \f(1,3)(纵坐标不变)
B.向右平移eq \f(π,6)个单位长度,再把所得各点的横坐标缩短到原来的eq \f(1,3)(纵坐标不变)
C.向左平移eq \f(π,6)个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)
D.向右平移eq \f(π,6)个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)
[解析] 先将y=2sinx,x∈R的图象向左平移eq \f(π,6)个单位长度,得到函数y=2sineq \b\lc\(\rc\)(\a\vs4\al\c1(x+\f(π,6))),x∈R的图象,再把所得图象上各点的横坐标伸长到原来的3倍(纵坐标不变),得到函数y=2sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(x,3)+\f(π,6))),x∈R的图象.
[答案] C
5.设函数f(x)=csωx(ω>0),将y=f(x)的图象向右平移eq \f(π,3)个单位长度后,所得的图象与原图象重合,则ω的最小值等于( )
A.eq \f(1,3) B.3 C.6 D.9
[解析] 将y=f(x)的图象向右平移eq \f(π,3)个单位长度后得到y=cseq \b\lc\[\rc\](\a\vs4\al\c1(ω\b\lc\(\rc\)(\a\vs4\al\c1(x-\f(π,3))))),所得图象与原图象重合,所以cseq \b\lc\(\rc\)(\a\vs4\al\c1(ωx-\f(π,3)ω))=csωx,则-eq \f(π,3)ω=2kπ(k∈Z),得ω=-6k(k∈Z).又因为ω>0,所以ω的最小值为6,故选C.
[答案] C
二、填空题
6.用“五点法”画函数y=2sineq \b\lc\(\rc\)(\a\vs4\al\c1(ωx+\f(π,3)))(ω>0)在一个周期内的简图时,五个关键点是eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(π,6),0)),eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,12),2)),eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,3),0)),eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(7,12)π,-2)),eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(5π,6),0)),则ω=________.
[解析] 因为周期T=eq \f(5π,6)-eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(π,6)))=π,所以eq \f(2π,ω)=π,所以ω=2.
[答案] 2
7.将函数y=sinx的图象上所有点____________________,得到y=sineq \b\lc\(\rc\)(\a\vs4\al\c1(x-\f(π,6)))的图象,再将y=sineq \b\lc\(\rc\)(\a\vs4\al\c1(x-\f(π,6)))的图象上所有点____________________,可得到y=sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)x-\f(π,6)))的图象.
[答案] 向右平移eq \f(π,6)个单位长度 纵坐标不变,横坐标伸长到原来的2倍
8.将函数y=eq \f(1,2)sin2x的图象上所有点的横坐标伸长为原来的2倍,然后纵坐标缩短为原来的eq \f(1,2),则所得图象的函数解析式为________________________.
[解析] y=eq \f(1,2)sin2xeq \(――――――――――――→,\s\up17(横坐标伸长为),\s\d15(原来的2倍))y=eq \f(1,2)sin2eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)x))=eq \f(1,2)
sinxeq \(―――――――――→,\s\up17(纵坐标缩短为),\s\d15(原来的\f(1,2)))y=eq \f(1,4)sinx.即所得图象的解析式为y=eq \f(1,4)sinx.
[答案] y=eq \f(1,4)sinx
三、解答题
9.函数f(x)=5sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x-\f(π,3)))-3的图象是由y=sinx的图象经过怎样的变换得到的?
[解] 先把函数y=sinx的图象向右平移eq \f(π,3)个单位,得y=sineq \b\lc\(\rc\)(\a\vs4\al\c1(x-\f(π,3)))的图象;再把所得函数图象上所有点的横坐标缩短为原来的eq \f(1,2)倍(纵坐标不变),得y=sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x-\f(π,3)))的图象;然后把所得函数图象上所有点的纵坐标伸长到原来的5倍(横坐标不变)得函数y=5sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x-\f(π,3)))的图象,最后将所得函数图象向下平移3个单位长度,得函数y=5sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x-\f(π,3)))-3的图象.
10.函数y=sin2x的图象向左平移φ(φ>0)个单位长度,得到的图象恰好关于直线x=eq \f(π,6)对称,求φ的最小值.
[解] y=sin2x的图象向左平移φ个单位长度,得y=sin2(x+φ),由于其图象关于直线x=eq \f(π,6)对称,故2×eq \f(π,6)+2φ=kπ+eq \f(π,2)(k∈Z),得φ=eq \f(kπ,2)+eq \f(π,12)(k∈Z),又φ>0,故φ的最小值为eq \f(π,12).
综合运用
11.为了得到函数y=cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(x,2)-\f(π,4)))的图象,可以将函数y=sineq \f(x,2)的图象( )
A.向左平移eq \f(π,2)个单位长度
B.向左平移eq \f(π,4)个单位长度
C.向右平移eq \f(π,2)个单位长度
D.向右平移eq \f(π,4)个单位长度
[解析] y=cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(x,2)-\f(π,4)))=sineq \b\lc\[\rc\](\a\vs4\al\c1(\f(π,2)+\b\lc\(\rc\)(\a\vs4\al\c1(\f(x,2)-\f(π,4)))))
=sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(x,2)+\f(π,4)))=sineq \b\lc\[\rc\](\a\vs4\al\c1(\f(1,2)\b\lc\(\rc\)(\a\vs4\al\c1(x+\f(π,2))))),故选A.
[答案] A
12.函数f(x)=sin(ωx+φ)的图象上所有的点向左平移eq \f(π,2)个单位长度.若所得图象与原图象重合,则ω的值不可能等于( )
A.4 B.6 C.8 D.12
[解析] 解法一:逐项代入检验,对B选项,f(x)=sin(6x+φ)图象向左平移eq \f(π,2)个单位得:y=sineq \b\lc\[\rc\](\a\vs4\al\c1(6\b\lc\(\rc\)(\a\vs4\al\c1(x+\f(π,2)))+φ))=sin(6x+φ+π)=-sin(6x+φ)的图象.
解法二:y=f(x)的图象向左平移eq \f(π,2)后得到y=
sineq \b\lc\[\rc\](\a\vs4\al\c1(ω\b\lc\(\rc\)(\a\vs4\al\c1(x+\f(π,2)))+φ))=sineq \b\lc\(\rc\)(\a\vs4\al\c1(ωx+\f(π,2)ω+φ)),其图象与原图象重合,有eq \f(π,2)ω=2kπ,即ω=4k,k∈Z,故选B.
[答案] B
13.将函数f(x)=sin(ωx+φ)eq \b\lc\(\rc\)(\a\vs4\al\c1(ω>0,-\f(π,2)≤φ<\f(π,2)))图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移eq \f(π,6)个单位长度得到y=sinx的图象,则feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,6)))=________.
[解析] y=sinx的图象向左平移eq \f(π,6)个单位长度,得到y=sineq \b\lc\(\rc\)(\a\vs4\al\c1(x+\f(π,6)))图象,再对每一点横坐标伸长为原来的2倍,得到y=sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)x+\f(π,6)))的图象即为f(x)=sin(ωx+φ)的图象,∴f(x)=sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)x+\f(π,6))),feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,6)))=eq \f(\r(2),2).
[答案] eq \f(\r(2),2)
14.某同学给出了以下论断:
①将y=csx的图象向右平移eq \f(π,2)个单位,得到y=sinx的图象;
②将y=sinx的图象向右平移2个单位,可得到y=sin(x+2)的图象;
③将y=sin(-x)的图象向左平移2个单位,得到y=
sin(-x-2)的图象;
④函数y=sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x+\f(π,3)))的图象是由y=sin2x的图象向左平移eq \f(π,3)个单位而得到的.
其中正确的结论是________(将所有正确结论的序号都填上).
[解析] ①正确;②错,y=sinx的图象向右平移2个单位,得y=sin(x-2)的图象;③正确;④错,应向左平移eq \f(π,6)个单位.
[答案] ①③
15.已知函数f(x)=3sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)x-\f(π,4))),x∈R.
(1)利用“五点法”画出函数f(x)在一个周期eq \b\lc\[\rc\](\a\vs4\al\c1(\f(π,2),\f(9π,2)))上的简图.
(2)先把f(x)的图象上所有点向左平移eq \f(π,2)个单位长度,得到f1(x)的图象;然后把f1(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到f2(x)的图象;再把f2(x)的图象上所有点的纵坐标缩短到原来的eq \f(1,3)倍(横坐标不变),得到g(x)的图象,求g(x)的解析式.
[解] (1)列表取值:描出五个关键点并用光滑连线连接,得到一个周期的简图.
(2)将f(x)=3sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)x-\f(π,4)))图象上所有点向左平移eq \f(π,2)个单位长度得到f1(x)=3sineq \b\lc\[\rc\](\a\vs4\al\c1(\f(1,2)\b\lc\(\rc\)(\a\vs4\al\c1(x+\f(π,2)))-\f(π,4)))
=3sineq \f(1,2)x的图象.
把 f1(x)=3sineq \f(1,2)x的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)得到f2(x)=3sineq \f(1,4)x的图象,把f2(x)=3sineq \f(1,4)x的图象上所有点的纵坐标缩短到原来的eq \f(1,3)倍(横坐标不变)得到g(x)=sineq \f(1,4)x的图象.
所以g(x)的解析式g(x)=sineq \f(1,4)x.
x
eq \f(π,2)
eq \f(3π,2)
eq \f(5π,2)
eq \f(7π,2)
eq \f(9π,2)
eq \f(1,2)x-eq \f(π,4)
0
eq \f(π,2)
π
eq \f(3π,2)
2π
f(x)
0
3
0
-3
0
高中数学人教A版 (2019)必修 第一册5.6 函数 y=Asin( ωx + φ)课时作业: 这是一份高中数学人教A版 (2019)必修 第一册5.6 函数 y=Asin( ωx + φ)课时作业,共8页。
高中数学人教A版 (2019)必修 第一册5.6 函数 y=Asin( ωx + φ)复习练习题: 这是一份高中数学人教A版 (2019)必修 第一册5.6 函数 y=Asin( ωx + φ)复习练习题,共7页。
高中5.6 函数 y=Asin( ωx + φ)同步练习题: 这是一份高中5.6 函数 y=Asin( ωx + φ)同步练习题,共8页。