初中数学第二十二章 二次函数综合与测试单元测试同步测试题
展开满分120分 时间100分钟
姓名:___________班级:___________座号:___________成绩:____________
一、选择题(每小题3分,共30分)
1.在下列关于x的函数中,一定是二次函数的是( )
A.y=x2 B.y=ax2+bx+c C.y=8x D.y=x2(1+x)
2.抛物线y=2x2+1的的对称轴是( )
A.直线x=B.直线x=C.x轴D.y轴
3.下列函数中,y总随x的增大而减小的是( )
A.y=4xB.y=﹣4xC.y=x﹣4D.y=x2
4.若将抛物线y=x2向右平移2个单位,再向上平移3个单位,则所得抛物线的表达式为( )
A.B.C.D.
5.在直角坐标系中,函数y= 3x与y= -x2+1的图像大致是( )
A. B. C. D.
6.当a≤x≤a+1时,函数y=x2-2x+1的最小值为1,则a的值为( )
A.-1 B.2 C.0或2 D.-1或2
7.抛物线的对称轴为直线.若关于的一元二次方程(为实数)在的范围内有实数根,则的取值范围是( )
A.B.C.D.
8.下列四个二次函数:①y=x2,②y=﹣2x2,③,④y=3x2,其中抛物线开口从大到小的排列顺序是( )
A.③①②④B.②③①④C.④②①③D.④①③②
9.如图,正方形的边长为,动点,同时从点出发,在正方形的边上,分别按,的方向,都以的速度运动,到达点运动终止,连接,设运动时间为,的面积为,则下列图象中能大致表示与的函数关系的是( )
A.B.
C.D.
10.如图,二次函数y=ax2+bx+c的图象经过点A(﹣1,0)、点B(3,0)、点C(4,y1),若点D(x2,y2)是抛物线上任意一点,有下列结论:
①二次函数y=ax2+bx+c的最小值为﹣4a;
②若﹣1≤x2≤4,则0≤y2≤5a;
③若y2>y1,则x2>4;
④一元二次方程cx2+bx+a=0的两个根为﹣1和
其中正确结论的个数是( )
A.1B.2C.3D.4
二、填空题(每小题4分,共32分)
11.若是二次函数,则_________.
12.抛物线y=2(x+2)2+4的顶点坐标为_____.
13.已知二次函数y=x2,当x>0时,y随x的增大而_____(填“增大”或“减小”).
14.二次函数的最大值是__________.
15.已知二次函数y=x2﹣4x+k的图象的顶点在x轴下方,则实数k的取值范围是_____.
16.二次函数y=﹣x2+bx+c的图象如图所示,则一次函数y=bx+c的图象不经过第___象限.
17.如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加______m.
18.如图,直线y=x+m和抛物线y=x2+bx+c都经过点A(1,0)和B(3,2),不等式x2+bx+c>x+m的解集为______________.
三、解答题(共7小题,58分)
19.(7分)已知,在同一平面直角坐标系中,反比例函数y=5x与二次函数y=-x2+2x+c的图象交于点A(-1,m).
(1)求m,c的值;
(2)求二次函数图象的对称轴和顶点坐标.
20.(7分)已知开口向上的抛物线y=ax2-2x+|a|-4经过点(0,-3).
(1)确定此抛物线的解析式;
(2)当x取何值时,y有最小值,并求出这个最小值.
21.(7分)如图,抛物线y=ax2-5ax+4a与x轴相交于点A,B,且过点C(5,4).
(1)求a的值和该抛物线顶点P的坐标;
(2)请你设计一种平移的方法,使平移后抛物线的顶点落在第二象限,并写出平移后抛物线的表达式.
22.(8分)如图,已知点A(0,2),B(2,2),C(-1,-2),抛物线F:y=x2-2mx+m2-2与直线x=-2交于点P.
(1)当抛物线F经过点C时,求它的解析式;
(2)设点P的纵坐标为yP,求yP的最小值,此时抛物线F上有两点(x1,y1),(x2,y2),且x1<x2≤-2,比较y1与y2的大小.
23.(9分)如图,已知二次函数的图象过A(2,0),B(0,-1)和C(4,5)三点.
(1)求二次函数的解析式;
(2)设二次函数的图象与轴的另一个交点为D,求点D的坐标;
(3)在同一坐标系中画出直线,并写出当在什么范围内时,一次函数的值大于二次函数的值.
24.(10分)某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.
(1)求出y与x的函数关系式;
(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?
(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?
25.(10分)如图,抛物线经过三点,已知
求此抛物线的关系式;
设点是线段上方的抛物线上一动点,过点作轴的平行线,交线段于点当的面积最大时,求点的坐标;
点是抛物线上的一动点,当中的面积最大时,请直接写出使的点的坐标
参考答案
一、选择题
1.A2.D3.B4.B5.D6.D7.A8.A9.A10.B
二、填空题
11.
12.(﹣2,4).
13.增大.
14.7
15.k<4
16.四
17.4-4
18.x<1或x>3
三、解答题
19.(1)c=-2;(2)对称轴为直线x=1,顶点坐标为(1,-1).
20.(1)抛物线的解析式为y=x 2 -2x-3;(2)当x=1时,y有最小值-4.
21.(1) (,-);(2)答案不唯一,合理即可,y=x2+x+2.
22.(1) ;(2).
23.(1)二次函数的解析式为
(2)点D的坐标为(-1,0)
(3)X的取值范围为了-1
24.(1)y=﹣2x+80(20≤x≤28);(2)每本纪念册的销售单价是25元;(3)该纪念册销售单价定为28元时,才能使文具店销售该纪念册所获利润最大,最大利润是192元.
25.(1);(2)点;(3)点的坐标为或
人教版九年级上册数学第22章二次函数 单元测试题(解析版): 这是一份人教版九年级上册数学第22章二次函数 单元测试题(解析版),共55页。试卷主要包含了单选题,填空题,解答题,综合题等内容,欢迎下载使用。
初中数学人教版九年级上册第二十二章 二次函数综合与测试单元测试课时作业: 这是一份初中数学人教版九年级上册第二十二章 二次函数综合与测试单元测试课时作业,共4页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
初中数学人教版九年级上册第二十二章 二次函数综合与测试精品单元测试巩固练习: 这是一份初中数学人教版九年级上册第二十二章 二次函数综合与测试精品单元测试巩固练习,共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。