所属成套资源:北师大版五年级上册数学随堂练习全套(含详细答案)
- 北师大版数学五年级上册-07六 组合图形的面积-022 探索活动:成长的脚印-随堂测试习题01含详细答案 试卷 2 次下载
- 北师大版数学五年级上册-07六 组合图形的面积-011 组合图形的面积-随堂测试习题02含详细答案 试卷 2 次下载
- 北师大版数学五年级上册-07六 组合图形的面积-011 组合图形的面积-随堂测试习题01含详细答案 试卷 2 次下载
- 北师大版数学五年级上册-07六 组合图形的面积-022 探索活动:成长的脚印-随堂测试习题02含详细答案 试卷 2 次下载
- 北师大版数学五年级上册-07六 组合图形的面积-011 组合图形的面积-随堂测试习题03含详细答案 试卷 2 次下载
小学数学1 组合图形的面积复习练习题
展开
这是一份小学数学1 组合图形的面积复习练习题,共9页。试卷主要包含了单选题,判断题,填空题,解答题,综合题,应用题等内容,欢迎下载使用。
一、单选题
1.将一个圆柱体削制成一个圆锥体,削去部分的体积是圆柱体积的( )
A. B. C. 2倍 D. 不能确定
2.下面组合图形的面积是( )平方米。
A. 216 B. 380 C. 596 D. 164
3.如图是用1平方厘米的正方形拼成的两个图形,它们的周长和面积相比,正确的是( )。
A. 周长相等,面积不相等 B. 周长不相等,面积相等 C. 周长相等,面积也相等
4.如图中的阴影部分面积是( )平方厘米
A. 144 B. 72 C. 18 D. 无法确定
二、判断题
5.判断,正确的填“正确”,错误的填“错误”.
两个面积相等的梯形,上底、下底和高一定相等.
6.如下图,大正方形的边长是2厘米,小正方形的边长是1厘米,则阴影部分的面积是2平方厘米。( )
7.如图 阴影部分与空白部分面积的比是1:1。
8.图中涂色的两个三角形面积是一样大的。
三、填空题
9.图中阴影部分是________形,它的底是小正方形的________,它的高是________。
10.芳芳家的客厅如下图(单位:米)
(1)芳芳家客厅的面积是________
(2)在地面上铺上边长是5分米的地砖,大约需要________块.
11.如图,4个棱长都是30cm的正方体堆放在墙角处,露在外面的面积是________cm²。
12.用不同的方法计算下图的面积________.(单位:厘米)
四、解答题
13. 如图,在半径为R的圆形钢板上,冲去半径为r的四个圆,请列出阴影部分面积S的计算式子,并利用因式分解计算当R=6.5,r=3.2时S的值(π≈3.14结果保留两个有效数字).
14.求下列阴影部分的面积。
20
五、综合题
15.看图列式计算
(1)武汉地铁2号线.
(2)已知BE=6dm,EC=4dm.求图中阴影部分的面积.
六、应用题
16.把一张长6dm,宽4dm的红纸剪成一个最大的圆,剪掉部分的面积是多少平方分米?
17.计算下面图形阴影部分的面积.(单位:米)
参考答案
一、单选题
1.【答案】 D
【解析】【解答】解:将一个圆柱体削制成一个最大的圆锥体,圆锥的体积是圆柱的,削去部分的体积是圆柱体积的,这里没说削成的圆锥是否最大,因此不能确定.
故选:D.
【分析】将一个圆柱体削制成一个最大的圆锥体,也就是说削成的圆锥与圆柱等底等高,圆锥的体积是圆柱的,即削去部分的体积是圆柱体积的,这里没说削成的圆锥是否最大,因此不能确定.
2.【答案】C
【解析】【解答】解:18×12+(12+28)×19÷2=596(平方米)
故答案为:C。
【分析】先算长方形的面积,再算梯形的面积,相加即可。
3.【答案】 C
【解析】【解答】解:这两个图形周长相等,面积也相等。
故答案为:C
【分析】第一个图形是4个正方形拼成的,第二个图形也是4个图形拼成的,所以它们面积相等,第一个图形的周长=10×一个正方形的边长,第二个图形的周长=10×一个正方形的边长,所以它们的周长也相等。
4.【答案】 B
【解析】【解答】解:24×6÷2
=24×3
=72(平方厘米)
答:图中的阴影部分面积是72平方厘米.
故选:B.
【分析】阴影部分几个三角形的底的和正好等于长方形的长,高等于长方形的宽,所以阴影部分的面积是长方形面积的一半,根据长方形的面积公式S=ab解答即可.
二、判断题
5.【答案】错误
【解析】【解答】解答:两个面积相等的梯形,上底、下底和高不一定相等.
梯形的面积相等,是用(上底+下底)×高÷2这个公式计算后所得的结果相等.
【分析】上底、下底和高不相等的梯形,面积可能相等.
6.【答案】 正确
【解析】【解答】2×2+1×1-(2+1)×2÷2=4+1-3=2(平方厘米),本题对.
故答案为:正确.
【分析】阴影面积=大正方形面积-小正方形面积-空白三角形面积,据此解答.
7.【答案】 正确
【解析】【解答】解:阴影部分的面积与空白部分的面积相等,比是1:1,原题说法正确。
故答案为:正确。
【分析】阴影部分是2.5个正方形的面积,空白部分也是2.5个正方形的面积,由此判断即可。
8.【答案】正确
【解析】【解答】解:图中涂色的两个三角形面积都是等底等高的两个三角形面积减去两个三角形重叠部分的面积,两部分面积是相等的。
故答案为:正确
【分析】两个三角形的面积都可以看做作是等底等高的两个三角形面积减去重叠部分的面积,等底等高的两个三角形面积相等,所以这两个涂色三角形的面积也相等。
三、填空题
9.【答案】三角;边长;大正方形的边长
【解析】【解答】图中阴影部分是三角形,它的底是小正方形的边长,它的高是大正方形的边长.
故答案为:三角;边长;大正方形的边长.
【分析】观察图形可知,阴影部分是三角形,它的底是小正方形的边长,它的高是大正方形的边长,据此解答.
10.【答案】 (1)244平方米
(2)976
【解析】【解答】解:(1)面积:
8×8+15×12
=64+180
=244(平方米)
(2)5分米=0.5米,0.5×0.5=0.25(平方米),
244÷0.25=976(块)
故答案为:(1)244平方米;(2)976。
【分析】(1)客厅左边是正方形,右边是长方形,把这两部分面积相加就是总面积;
(2)用客厅的面积除以每块瓷砖的面积就是需要瓷砖的块数,注意统一单位。
11.【答案】 8100
【解析】【解答】30×30=900(cm²);900×9=8100(cm²)。
故答案为:8100。
【分析】一个面的面积是900,露在外面的一共有9个面,露在外面的正方形面数×一个面的面积=露在外面的面积。
12.【答案】75平方厘米
【解析】【解答】
(10+5)×(12-6)÷2+5×6
=15×6÷2+30
=45+30
=75(平方厘米)
5×12+(12-6)×(10-5)÷2
=60+15
=75(平方厘米)
【分析】第一种计算方法是把这个图形分成一个梯形和一个长方形,另一种方法是把这个图形分成一个长方形和一个三角形,然后根据平面图形的面积公式计算即可。
四、解答题
13.【答案】解:S=πR2﹣4πr2
=π(R2﹣4r2)
当R=6.5,r=3.2时,
S=3.14×(6.52﹣4×3.22)
=3.14×(42.25﹣40.96)
=3.14×1.29
=4.0506
≈4.1.
答:阴影部分面积S=πR2﹣4πr2,当R=6.5,r=3.2时,S=4.1
【解析】【分析】用大圆的面积减去4个小圆的面积即可得到剩余部分的面积,然后把R和r的值代入计算出对应的代数式的值.
14.【答案】解:S阴=20×20-3.14×(20÷2)2
=400-314
=86
【解析】【分析】阴影部分的面积是正方形面积减去空白部分的面积,空白部分刚好是一个圆形的面积,由此根据公式计算即可.
五、综合题
15.【答案】 (1)解: 5.6÷(1﹣ ),
=5.6 ,
=28(千米),
答:全长28千米;
(2)解:(6+4)×(6+4)÷2﹣6×6÷2﹣4×4÷2,
=10×10÷2﹣18﹣8,
=50﹣18﹣8,
=32﹣8,
=24(平方分米),
答:阴影部分面积是24平方分米.
【解析】【分析】(1)把全长看作单位“1”,修了全长的 ,还剩5.6米,求出剩余长度占全长的几分之几,也就是5.6米占全长的分率,依据分数除法意义即可解答,(2)三角形ECD是等腰直角三角形,那么DC=EC,三角形ABE也是等腰直角三角形,AB=BE,根据三角形面积=底×高÷,分别求出三角形ABE,以及三角形ECD的面积,再根据梯形面积=(上底+下底)×高÷2,求出梯形ABCD的面积,最后根据阴影面积=梯形面积﹣三角形ABE面积﹣三角形ECD的面积即可解答.本题考查知识点:(1)分数乘法意义,(2)三角形、梯形面积计算.
六、应用题
16.【答案】解:
答:剪掉部分的面积是11.44平方分米。
【解析】【分析】剪成的最大圆的直径与长方形的宽相等,用长方形面积减去圆的面积就是剪掉部分的面积,长方形面积=长×宽,圆面积:S=πr²。
17.【答案】解:12×8-5×8÷2=76(平方米)
答:阴影部分面积是76平方米.
【解析】【分析】观察图形可知阴影部分的面积等于长是12米、宽是8米的长方形面积减去底边是5米、底边上高是8米的三角形的面积,再列式计算即可.
相关试卷
这是一份小学数学北师大版五年级上册1 精打细算当堂检测题,共8页。试卷主要包含了单选题,判断题,填空题,解答题,综合题,应用题等内容,欢迎下载使用。
这是一份小学数学北师大版五年级上册六 组合图形的面积2 探索活动:成长的脚印课时练习,共6页。试卷主要包含了单选题,判断题,填空题,解答题,综合题,应用题等内容,欢迎下载使用。
这是一份小学北师大版1 组合图形的面积同步达标检测题,共5页。试卷主要包含了计算下面图形的面积,计算图中阴影部分的面积,解决问题等内容,欢迎下载使用。