人教版第二十四章 圆24.1 圆的有关性质24.1.2 垂直于弦的直径教学设计
展开课题
24.1.2 垂直于弦的直径
课 型
新授课
课 时
1
教学
目标
理解垂径定理并灵活运用垂径定理及圆的概念解决一些实际问题.
通过复合图形的折叠方法得出猜想垂径定理,并辅以逻辑证明加予理解.
教 学
重 点
难 点
重点 垂径定理及其运用.
难点 探索并证明垂径定理及利用垂径定理解决一些实际问题.
教 学
准 备
多媒体
教
学
过
程
一、复习引入
①在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点所形成的图形叫做圆.固定的端点O叫做圆心,线段OA叫做半径.
以点O为圆心的圆,记作“⊙O”,读作“圆O”.
②连接圆上任意两点的线段叫做弦,如图线段AC,AB;
③经过圆心的弦叫做直径,如图线段AB;
④圆上任意两点间的部分叫做圆弧,简称弧,以A,C为端点的弧记作“eq \(AC,\s\up8(︵))”,读作“圆弧AC”或“弧AC”.大于半圆的弧(如图所示eq \(ABC,\s\up8(︵)))叫做优弧,小于半圆的弧(如图所示eq \(AC,\s\up8(︵))或eq \(BC,\s\up8(︵)))叫做劣弧.
⑤圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.
⑥圆是轴对称图形,其对称轴是任意一条过圆心的直线.
二、探索新知
(学生活动)请同学按要求完成下题:
如图,AB是⊙O的一条弦,作直径CD,使CD⊥AB,垂足为M.
(1)如图是轴对称图形吗?如果是,其对称轴是什么?
(2)你能发现图中有哪些等量关系?说一说你理由.
(老师点评)(1)是轴对称图形,其对称轴是CD.
(2)AM=BM,eq \(AC,\s\up8(︵))=eq \(BC,\s\up8(︵)),eq \(AD,\s\up8(︵))=eq \(BD,\s\up8(︵)),即直径CD平分弦AB,并且平分eq \(AB,\s\up8(︵))及eq \(ADB,\s\up8(︵)).
这样,我们就得到下面的定理:
垂直于弦的直径平分弦,并且平分弦所对的两条弧.
下面我们用逻辑思维给它证明一下:
已知:直径CD、弦AB,且CD⊥AB垂足为M.
求证:AM=BM,eq \(AC,\s\up8(︵))=eq \(BC,\s\up8(︵)),eq \(AD,\s\up8(︵))=eq \(BD,\s\up8(︵)).
分析:要证AM=BM,只要证AM,BM构成的两个三角形全等.因此,只要连接OA,OB或AC,BC即可.
证明:如图,连接OA,OB,则OA=OB,
在Rt△OAM和Rt△OBM中,
∴Rt△OAM≌Rt△OBM,
∴AM=BM,
∴点A和点B关于CD对称,
∵⊙O关于直径CD对称,
∴当圆沿着直线CD对折时,点A与点B重合,eq \(AC,\s\up8(︵))与eq \(BC,\s\up8(︵))重合,eq \(AD,\s\up8(︵))与eq \(BD,\s\up8(︵))重合.
∴eq \(AC,\s\up8(︵))=eq \(BC,\s\up8(︵)),eq \(AD,\s\up8(︵))=eq \(BD,\s\up8(︵)).
进一步,我们还可以得到结论:
平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.
(本题的证明作为课后练习)
例1 有一石拱桥的桥拱是圆弧形,如图所示,正常水位下水面宽AB=60 m,水面到拱顶距离CD=18 m,当洪水泛滥时,水面宽MN=32 m时是否需要采取紧急措施?请说明理由.
分析:要求当洪水到来时,水面宽MN=32 m是否需要采取紧急措施,只要求出DE的长,因此只要求半径R,然后运用几何代数解求R.
解:不需要采取紧急措施,
设OA=R,在Rt△AOC中,AC=30,CD=18,
R2=302+(R-18)2,
R2=900+R2-36R+324,
解得R=34(m),
连接OM,设DE=x,在Rt△MOE中,ME=16,
342=162+(34-x)2,
162+342-68x+x2=342,x2-68x+256=0,
解得x1=4,x2=64(不合题意,舍去),
∴DE=4,
∴不需采取紧急措施.
作 业
布 置
1.垂径定理推论的证明.
2.教材第89,90页 习题第8,9,10题.
课堂总结
垂径定理及其推论以及它们的应用.
初中数学人教版九年级上册第二十四章 圆24.1 圆的有关性质24.1.2 垂直于弦的直径公开课教学设计: 这是一份初中数学人教版九年级上册第二十四章 圆24.1 圆的有关性质24.1.2 垂直于弦的直径公开课教学设计,共14页。教案主要包含了教学目标,课型,课时,教学重难点,课前准备,教学过程,课后作业,板书设计等内容,欢迎下载使用。
数学24.1.2 垂直于弦的直径公开课教案设计: 这是一份数学24.1.2 垂直于弦的直径公开课教案设计,共6页。教案主要包含了探究新知,垂径定理的实际应用等内容,欢迎下载使用。
初中数学人教版九年级上册第二十四章 圆24.1 圆的有关性质24.1.2 垂直于弦的直径教学设计及反思: 这是一份初中数学人教版九年级上册第二十四章 圆24.1 圆的有关性质24.1.2 垂直于弦的直径教学设计及反思,共7页。教案主要包含了教学目标,学习重点,学习难点,教学过程,归纳小结,布置作业,教学反思等内容,欢迎下载使用。