搜索
    上传资料 赚现金
    (新)北师大版数学必修第一册课件:第二章 §3 第2课时 函数的最值
    立即下载
    加入资料篮
    (新)北师大版数学必修第一册课件:第二章  §3 第2课时 函数的最值01
    (新)北师大版数学必修第一册课件:第二章  §3 第2课时 函数的最值02
    (新)北师大版数学必修第一册课件:第二章  §3 第2课时 函数的最值03
    (新)北师大版数学必修第一册课件:第二章  §3 第2课时 函数的最值04
    (新)北师大版数学必修第一册课件:第二章  §3 第2课时 函数的最值05
    (新)北师大版数学必修第一册课件:第二章  §3 第2课时 函数的最值06
    (新)北师大版数学必修第一册课件:第二章  §3 第2课时 函数的最值07
    (新)北师大版数学必修第一册课件:第二章  §3 第2课时 函数的最值08
    还剩23页未读, 继续阅读
    下载需要30学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北师大版 (2019)必修 第一册3 函数的单调性和最值优秀ppt课件

    展开
    这是一份北师大版 (2019)必修 第一册3 函数的单调性和最值优秀ppt课件,共31页。PPT课件主要包含了激趣诱思,知识点拨,函数的最值1定义,fx≤M,fx≥M,探究一,探究二,探究三,素养形成,当堂检测等内容,欢迎下载使用。

    某超市销售一种饮料,每瓶进价为9元,经市场调查表明,当售价在10元到14元之间(包含10元,14元)浮动时,每瓶饮料售价每增加0.5元,日均销售量减少40瓶;当售价为每瓶12元时,日均销售量为400瓶.那么当销售价格定为每瓶多少元时,所得日均毛利润最大?最大日均毛利润是多少元?同学们,你能帮助超市完成定价吗?
    微思考若函数y=f(x)是定义在区间[a,b]上的增(或减)函数,这个函数有最值吗?如果是区间(a,b)呢?
    提示:若y=f(x)是定义在区间[a,b]上是增函数,则其最小值为f(a),最大值为f(b);若为减函数,最大值为f(a),最小值为f(b).若为区间(a,b),则没有最值,但可以说值域为(f(a),f(b))(或f(b),f(a)).
    2.函数的最大值和最小值统称为最值.名师点析函数的最值和值域的联系与区别1.联系:函数的最值和值域反映的都是函数的基本性质,针对的是整个定义域.2.区别:(1)函数的值域一定存在,而函数的最大(小)值不一定存在;(2)若函数的最值存在,则最值一定是值域中的元素;(3)若函数的值域是开区间(两端点都取不到),则函数无最值;若函数的值域是闭区间,则闭区间的端点值就是函数的最值.
    微练习已知函数f(x)在[-2,2]上的图象如图所示,则该函数的最小值、最大值分别是(  )A.f(-2),0   B.0,2C.f(-2),2 D.f(2),2
    答案:C 解析:由题图可知,该函数的最小值为f(-2),最大值为f(1)=2.
    利用函数的图象求最值例1已知函数y=-|x-1|+2,画出函数的图象,确定函数的最值情况,并写出值域.分析去绝对值→分段函数→作图→识图→结论
    由图象知,函数y=-|x-1|+2的最大值为2,没有最小值.所以其值域为(-∞,2].
    (1)画出f(x)的图象;(2)利用图象写出该函数的最大值和最小值.
    解:(1)函数f(x)的图象如图所示.
    (2)由图象可知f(x)的最小值为f(1)=1,无最大值.
    利用函数的单调性求最值
    (1)判断f(x)在区间[1,2]上的单调性;(2)根据f(x)的单调性求出f(x)在区间[1,2]上的最值.分析(1)证明单调性的流程:取值→作差→变形→判断符号→结论;(2)借助最值与单调性的关系,写出最值.
    ∵x10,1f(x2),即f(x)在区间[1,2]上单调递减.
    (2)由(1)知f(x)的最小值为f(2),f(2)=2+ =4;f(x)的最大值为f(1),f(1)=1+4=5,∴f(x)的最小值为4,最大值为5.
    反思感悟函数的最值与单调性的关系(1)若函数f(x)在区间[a,b]上单调递增(或单调递减),则f(x)在区间[a,b]上的最小(大)值是f(a),最大(小)值是f(b).(2)若函数f(x)在区间[a,b]上单调递增(或单调递减),在区间(b,c]上单调递减(或单调递增),则f(x)在区间[a,c]上的最大(小)值是f(b),最小(大)值是f(a)与f(c)中较小(大)的一个.(3)若函数f(x)在区间[a,b]上的图象是一条连续不断的线,则函数f(x)在区间[a,b]上一定有最值.(4)求最值时一定要注意所给区间的开闭,若是开区间,则不一定有最大(小)值.
    延伸探究本例已知条件不变,判断f(x)在区间[1,3]上的单调性,并求f(x)在区间[1,3]上的最值.
    解:任取x1,x2∈[1,3],且x1f(x)在区间[1,2]上单调递减;当20,40,∴f(x1)与最值有关的应用问题例3某租赁公司拥有汽车100辆,当每辆车的月租金为3 000元时,可全部租出,当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金为3 600元时,能租出多少辆?(2)当每辆车的月租金为多少元时,租赁公司的月收益最大?最大月收益是多少?分析读题→提取信息→建模→解模→解决实际问题
    所以当x=4 050,即每辆车的租金为4 050元时,租赁公司的月收益最大,最大月收益是307 050元.
    反思感悟1.本题建立的是二次函数模型,应利用配方法求函数的最值.2.解函数应用题的一般程序是:(1)审题.弄清题意,分清条件和结论,理顺数量关系.(2)建模.将文字语言转化成数学语言,用数学知识建立相应的数学模型.(3)求模.求解数学模型,得到数学结论.(4)还原.将用数学方法得到的还原为实际问题的结论.(5)反思回顾.对于数学模型得到的数学解,必须验证这个数学解对实际问题的合理性.
    变式训练2某公司生产一种电子仪器的固定成本为20 000元,每生产一台仪器需增加投入100元,已知总收益满足函
    (1)将利润表示为月产量的函数f(x);(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?(总收益=总成本+利润)
    当x>400时,f(x)=60 000-100x单调递减,f(x)<60 000-100×400<25 000.∴当x=300时,f(x)max=25 000.即每月生产300台仪器时利润最大,最大利润为25 000元.
    利用数形结合思想与分类讨论思想求二次函数的最值典例求函数y=x2-2ax-1在区间[0,2]上的最值.【审题视角】可变对称轴x=a→与定区间[0,2]的 相对位置关系→结合单调性与图象求解解:y=(x-a)2-1-a2.当a<0时,函数在[0,2]上单调递增,如图①.故函数在x=0处取得最小值-1,在x=2处取得最大值3-4a.当0≤a≤1时,结合函数图象(如图②)知,函数在x=a处取得最小值-a2-1,在x=2处取得最大值3-4a.
    当12时,函数在区间[0,2]上单调递减,如图④.函数在x=0处取得最大值-1,在x=2处取得最小值3-4a.综上,当a<0时,函数在区间[0,2]上的最小值为-1,最大值为3-4a;当0≤a≤1时,函数在区间[0,2]上的最小值为-a2-1,最大值为3-4a;当12时,函数在区间[0,2]上的最小值为3-4a,最大值为-1.
    方法点睛1.探求二次函数在给定区间上的最值问题,一般要先作出y=f(x)的图象,再根据函数的单调性进行研究.特别要注意二次函数图象的对称轴与所给区间的位置关系,它是求解二次函数在已知区间上最值问题的主要依据.二次函数图象的对称轴与所给区间的位置关系通常有三种:(1)对称轴在所给区间的右侧;(2)对称轴在所给区间的左侧;(3)对称轴在所给区间内.
    2.对于二次函数f(x)=a(x-h)2+k(a>0)在区间[m,n]上的最值可作如下讨论:
    变式训练函数f(x)=x2-2x+2(其中x∈[t,t+1],t∈R)的最小值为g(t),求g(t)的表达式.
    解:由函数f(x)=x2-2x+2知其图象的开口向上,对称轴为x=1.下面分三种情况讨论:当t+1≤1,即t≤0时,如图①所示,此时函数f(x)在[t,t+1]上单调递减,
    ②所示,此时,函数f(x)在[t,1]上单调递减,在(1,t+1]上单调递增,∴g(t)=f(1)=1.当t≥1时,如图③所示,此时,函数f(x)在[t,t+1]上单调递增.∴g(t)=f(t)=t2-2t+2.
    2.函数y=|x+1|+2的最小值是(  )A.0B.-1C.2D.3
    答案:C 解析:y=|x+1|+2的图象如图所示.
    由图可知函数的最小值为2.
    3.函数y=x2-2x,x∈[0,3]的值域为(  )A.[0,3] B.[-1,0]C.[-1,+∞)D.[-1,3]
    答案:D 解析:∵函数y=x2-2x=(x-1)2-1,x∈[0,3],∴当x=1时,函数y取得最小值为-1;当x=3时,函数取得最大值为3.故函数的值域为[-1,3],故选D.
    答案:11 解析:当x∈[1,2]时,f(x)为增函数,其最大值为f(2)=10;当x∈[-4,1]时,f(x)为减函数,其最大值为f(-4)=11.故函数f(x)的最大值为11.
    相关课件

    2021学年3 函数的单调性和最值说课课件ppt: 这是一份2021学年3 函数的单调性和最值说课课件ppt,共26页。

    高中数学人教A版 (2019)必修 第一册3.2 函数的基本性质教案配套ppt课件: 这是一份高中数学人教A版 (2019)必修 第一册3.2 函数的基本性质教案配套ppt课件,共44页。

    北师大版 (2019)必修 第一册第二章 函数本章综合与测试优秀课件ppt: 这是一份北师大版 (2019)必修 第一册第二章 函数本章综合与测试优秀课件ppt,共21页。PPT课件主要包含了分段函数,变式训练2已知函数等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        (新)北师大版数学必修第一册课件:第二章 §3 第2课时 函数的最值
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map