终身会员
搜索
    上传资料 赚现金
    (新)苏教版高中数学必修第一册学案:第3章 3.3.1 从函数观点看一元二次方程(含解析)
    立即下载
    加入资料篮
    (新)苏教版高中数学必修第一册学案:第3章 3.3.1 从函数观点看一元二次方程(含解析)01
    (新)苏教版高中数学必修第一册学案:第3章 3.3.1 从函数观点看一元二次方程(含解析)02
    (新)苏教版高中数学必修第一册学案:第3章 3.3.1 从函数观点看一元二次方程(含解析)03
    还剩8页未读, 继续阅读
    下载需要25学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    苏教版 (2019)必修 第一册第3章 不等式3.3 从函数观点看一元二次方程和一元二次不等式优质学案设计

    展开
    这是一份苏教版 (2019)必修 第一册第3章 不等式3.3 从函数观点看一元二次方程和一元二次不等式优质学案设计,共11页。

    3.3 从函数观点看一元二次方程和一元二次不等式


    3.3.1 从函数观点看一元二次方程








    函数与方程有着一定的联系,请尝试完成下列两个表格;并思考它们有着怎样的联系?











    1.二次函数的零点


    一般地,一元二次方程ax2+bx+c=0(a≠0)的根就是二次函数y=ax2+bx+c (a≠0)当函数值取零时自变量x的值,即二次函数y=ax2+bx+c (a≠0)的图象与x轴的交点的横坐标,也称为二次函数y=ax2+bx+c (a≠0)的零点.


    提醒:函数的零点不是点,而是一个实数,是函数的图象与x轴的交点的横坐标;也是函数值为零时自变量的x的值,也是函数相应的方程相异的实数根.


    2.当a>0时,一元二次方程ax2+bx+c=0的根、二次函数y=ax2+bx+c的图象、二次函数y=ax2+bx+c的零点之间的关系如下表所示:





    1.函数y=x2+4x-5的零点为( )


    A.-5和1 B.(-5,0)和(1,0)


    C.-5 D.1


    A [由x2+4x-5=0得x1=-5或x2=1.]


    2.函数y=x2+2ax-a2-1(a∈R)的零点的个数为 .


    2 [由x2+2ax-a2-1=0得Δ=4a2-4(-a2-1)=8a2+4>0,所以函数零点的个数为2.]


    3.函数y=x2+2x-1的零点在区间(n,n+1)(n∈Z),则n的取值集合为 .


    {-3,0} [由x2+2x-1=0解得x1=-1-eq \r(2),x2=-1+eq \r(2),因为-1-eq \r(2)∈(-3,-2),-1+eq \r(2)∈(0,1),所以n的取值集合为{-3,0}.]








    【例1】 求下列函数的零点.


    (1)y=3x2-2x-1;


    (2) y=ax2-x-a-1(a∈R);


    (3) y=ax2+bx+c, 其图象如图所示.





    [思路点拨] (1)直接解出相应方程的根.


    (2)对于二次项的系数a分a=0,a≠0两类进行讨论,当a≠0时,还要比较两根的大小.


    (3)根据相应函数的图象,找到其与x轴的交点的横坐标.


    [解] (1)由3x2-2x-1=0解得x1=1,x2=-eq \f(1,3),所以函数y=3x2-2x-1的零点为1和-eq \f(1,3).


    (2)(ⅰ)当a=0时,y=-x-1,由-x-1=0得x=-1,所以函数的零点为-1.


    (ⅱ)当a≠0时,由ax2-x-a-1=0得(ax-a-1)(x+1)=0,解得x1=eq \f(a+1,a),x2=-1.


    又eq \f(a+1,a)-(-1)=eq \f(2a+1,a),


    ①当a=-eq \f(1,2)时,x1=x2=-1,函数有唯一的零点-1.


    ②当a≠-eq \f(1,2)且a≠0时,x1≠x2,函数有两个零点-1和eq \f(a+1,a).


    综上:当a=0或eq \f(1,2)时,函数的零点为-1.


    当a≠-eq \f(1,2)且a≠0时,函数有两个零点-1和eq \f(a+1,a).


    (3)由函数的图象与x轴的交点的横坐标为-1和3,所以该函数的零点为-1和3.





    1.求函数的零点就是解相应的方程,相应方程互异的实根就是函数的零点.


    2.函数的图象与x轴交点的横坐标就是函数的零点.


    3.求含有参数的函数y=ax2+bx+c的零点分类讨论的步骤:


    (1)若二次项系数中含有参数,则讨论二次项系数是否为零;


    (2)若二次项系数不是零,讨论对应方程的根的判别式的符号,判定方程是否有实数.


    若可以因式分解,则一定存在零点.


    (3)若二次项系数不是零,且相应方程有实数根,讨论相应方程的实数根是否相等.





    eq \([跟进训练])


    1.求下列函数的零点.


    (1)y=2x2-3x-2;


    (2)y=ax2-x-1;


    (3)y=ax2+bx+c, 其图象如图所示.





    [解] (1)由2x2-3x-2=0解得x1=2,x2=-eq \f(1,2),所以函数y=3x2-2x-1的零点为2和-eq \f(1,2).


    (2)(ⅰ)当a=0时,y=-x-1,由-x-1=0得x=-1,所以函数的零点为-1.


    (ⅱ)当a≠0时,由ax2-x-1=0得Δ=1+4a,


    当Δ<0,即a<-eq \f(1,4)时,相应方程无实数根,函数无零点;


    当Δ=0,即a=-eq \f(1,4)时,x1=x2=-2,函数有唯一的零点-2.


    ②当Δ>0,即a>-eq \f(1,4)时,由ax2-x-1=0得x1,2=eq \f(1±\r(1+4a),2a),


    函数有两个零点eq \f(1+\r(1+4a),2a)和eq \f(1-\r(1+4a),2a).


    综上:当a=0时,函数的零点为-1;


    当a=-eq \f(1,4)时,函数的零点为-2;


    当a>-eq \f(1,4)时,函数有两个零点eq \f(1+\r(1+4a),2a)和eq \f(1-\r(1+4a),2a);


    当a<-eq \f(1,4)时,相应方程无实数根,函数无零点.


    (3) 由函数的图象与x轴的交点的横坐标为-3和1,所以该函数的零点为-3和1.


    【例2】 若a>2,求证: 函数y= (a-2)x2-2(a-2)x-4有两个零点.


    [思路点拨] 要证明二次函数有两个零点,需要证明一元二次方程(a-2)x2-2(a-2)x-4=0有两个不相等实数根.


    [证明] 考察一元二次方程(a-2)x2-2(a-2)x-4=0,


    因为Δ=4(a-2)2+16(a-2)=4(a-2)(a+2),


    又a>2,所以Δ>0,


    所以函数y= (a-2)x2-2(a-2)x-4有两个零点.





    (变题)求函数y= (a-2)x2-2(a-2)x-4有零点的充要条件.


    [解] [必要性]因为函数y= (a-2)x2-2(a-2)x-4有零点,


    当a=2时,方程(a-2)x2-2(a-2)x-4=0无解.函数无零点;


    当a≠2时,因为函数y= (a-2)x2-2(a-2)x-4有零点,所以方程(a-2)x2-2(a-2)x-4=0有实数根.所以Δ=4(a-2)2+16(a-2)=4(a-2)(a+2)≥0,


    即eq \b\lc\{\rc\ (\a\vs4\al\c1(a-2≥0,,a+2≥0)) 或eq \b\lc\{\rc\ (\a\vs4\al\c1(a-2≤0,,a+2≤0,)) 解得a≥2或a≤-2,


    又a≠2,所以a>2或a≤-2,


    所以函数y= (a-2)x2-2(a-2)x-4有零点,则a>2或a≤-2.


    [充分性]当a>2或a≤-2时,对于方程(a-2)x2-2(a-2)x-4=0,


    Δ=4(a-2)2+16(a-2)=4(a-2)(a+2)≥0,


    所以函数y= (a-2)x2-2(a-2)x-4有零点.


    综上函数y= (a-2)x2-2(a-2)x-4有零点的充要条件是a>2或a≤-2.





    二次函数y=ax2+bx+ca≠0的零点的论证


    对于一元二次方程ax2+bx+c=0a≠0的根的判别式Δ=b2-4ac.


    1Δ>0⇔ 函数y=ax2+bx+ca≠0有两个零点.


    2Δ=0⇔ 函数y=ax2+bx+ca≠0有一个零点.


    3Δ<0⇔ 函数y=ax2+bx+ca≠0无零点.





    eq \([跟进训练])


    2.求证:函数y=ax2-x-a(a∈R)有零点.


    [证明] 当a=0时,y=-x,该函数有零点0;


    当a≠0时,对于一元二次方程ax2-x-a=0,Δ=1+4a2>0,函数y=ax2-x-a有两个零点.


    综上,函数y=ax2-x-a(a∈R)有零点.


    【例3】 (1)判断二次函数y=-x2-2x+1在(-3,-2)是否存在零点;


    (2)若二次函数y=(a-2)x2-2(a-2)x-4(a≠2)的两个零点均为正数,求实数a的取值范围.


    [思路点拨] (1)直接求出函数的零点,再加以判定.


    (2)结合相应一元二次方程的判别式和根与系数的关系进行研究.


    [解] (1) 由-x2-2x+1=0得x1=-1+eq \r(2),x2=-1-eq \r(2),因为-3<-1-eq \r(2)<-2,


    所以二次函数y=-x2-2x+1在(-3,-2)存在零点.


    (2)因为函数y= (a-2)x2-2(a-2)x-4的两个零点均为正数,


    所以(a-2)x2-2(a-2)x-4=0有两个不相等的正实数根.显然a≠2.


    由一元二次方程的根与系数的关系得


    eq \b\lc\{\rc\ (\a\vs4\al\c1(Δ=4a-2a+2>0,,x1+x2=-\f(-2a-2,a-2)=2>0,,x1x2=\f(-4,2a-2)>0,)) 即eq \b\lc\{\rc\ (\a\vs4\al\c1(a>2或a<-2,,a<2,))


    所以a<-2.


    即实数a的取值范围(-∞,-2).





    1.二次函数y=ax2+bx+c(a≠0)的零点的分布探究


    结合一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2-4ac和根与系数的关系处理


    (1) eq \b\lc\{\rc\ (\a\vs4\al\c1(Δ>0,,x1+x2>0,,x1x2>0)) ⇔ 函数y=ax2+bx+c(a≠0)有两个正零点.


    (2) eq \b\lc\{\rc\ (\a\vs4\al\c1(Δ>0,,x1+x2<0,,x1x2>0)) ⇔ 函数y=ax2+bx+c(a≠0)有两个负零点.


    (3) x1x2<0⇔ 函数y=ax2+bx+c(a≠0)有两个异号零点.


    2.二次函数的零点如果能够求出,再研究其分布就很方便.





    eq \([跟进训练])


    3.已知函数y=x2-x-a2+a(a∈R).


    (1)若该函数有两个正的零点,求a的取值范围;


    (2)若该函数有两个零点,一个大于1,另外一个小于1,求a的取值范围.


    [解] 法一:由x2-x-a2+a=0得x1=a,x2=1-a,


    (1)因为该函数有两个正的零点,所以eq \b\lc\{\rc\ (\a\vs4\al\c1(a>0,,1-a>0,,a≠1-a,)) 解得0

    所以a的取值范围是0

    (2)因为函数有两个零点,一个大于1,另外一个小于1,


    所以eq \b\lc\{\rc\ (\a\vs4\al\c1(a≠1-a,,a>1,,1-a<1)) 或eq \b\lc\{\rc\ (\a\vs4\al\c1(a≠1-a,,1-a>1,,a<1,)) 解得a>1或a<0.


    所以a的取值范围是a>1或a<0.


    法二:(1)因为该函数有两个正的零点,该函数其相应方程为x2-x-a2+a=0,


    所以eq \b\lc\{\rc\ (\a\vs4\al\c1(Δ=1-4-a2+a=2a-12>0,,x1+x2=\f(1,2)>0,,x1x2=-a2+a>0,))


    解得0

    所以a的取值范围是0

    (2) 方程x2-x-a2+a=0中Δ=1-4(-a2+a)=(2a-1)2≥0,设其两实数根分别为x1,x2,


    则eq \b\lc\{\rc\ (\a\vs4\al\c1(x1+x2=1,,x1x2=-a2+a,))


    因为函数有两个零点,一个大于1,另外一个小于1,


    所以(x1-1)(x2-1)<0,即x1x2-(x1+x2)+1<0,所以(-a2+a)-1+1<0,解得a>1或a<0.


    所以a的取值范围是a>1或a<0.








    1.求函数的零点,可以结合相应函数的图象,看其与x轴交点的横坐标,也可以直接解相应的方程,求出其不相等的实数根;对于含有参数的函数零点个数的讨论,可以着手从参数是否影响方程的次数、方程根的存在性、方程根的大小等方面确定分类讨论的标准.


    2.二次函数零点个数的论证本质上就是论证相应一元二次方程的根的判别式与0的大小关系.


    3.二次函数零点的分布研究,可以先解出相应方程的实数根,再判定,也可以研究相应的一元二次方程,利用根与系数的关系求解.





    1.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(-3,0),对称轴为x=-1.给出下面四个结论:①b2>4ac;②2a-b=1;③a-b+c=0;④5a




    A.②④ B.①④


    C.②③ D.①③


    B [因为二次函数的图象与x轴交于两点,所以b2-4ac>0,即b2>4ac,①正确;对称轴为x=-1,即-eq \f(b,2a)=-1,2a-b=0,②错误;结合图象,当x=-1时,y>0,即a-b+c>0,③错误;由对称轴为x=-1知,b=2a,又函数图象开口向下,所以a<0,所以5a<2a,即5a

    2.已知函数y=2ax-a+3在(-1,1)上有零点,则实数a的取值范围是 .


    (-∞,-3)∪(1,+∞) [当a=0时,函数y=3,无零点,当a≠0时,由2ax-a+3=0得,x=eq \f(a-3,2a),所以-10时-2a1;当a<0时,-2a>a-3>2a,解得a<-3,所以实数a的取值范围是(-∞,-3)∪(1,+∞).]


    3.已知p:关于x的方程ax2+bx+c=0有异号两个实数根,q:ac<-1,则p是q的 条件.


    必要不充分 [因为关于x的方程ax2+bx+c=0有异号两个实数根⇔x1x2=eq \f(c,a)<0⇔ac<0,所以p是q的必要不充分条件.]


    4.已知函数y=x2+mx-1,若对于任意x∈[m,m+1],都有y<0成立,求实数m的取值范围.


    [解] 作出二次函数y=x2+mx-1的草图,对于任意x∈[m,m+1],都有y<0,





    则有x=m时,y<0,且x=m+1时,y<0.


    即eq \b\lc\{\rc\ (\a\vs4\al\c1(m2+m2-1<0,,m+12+mm+1-1<0,)) 解得-eq \f(\r(2),2)

    所以实数m的取值范围为eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(\r(2),2),0)).


    学 习 目 标
    核 心 素 养
    1.理解函数零点的概念.(重点)


    2.能根据“两个二次”之间的关系研究函数的零点.(重点、难点)
    通过以一元二次方程研究函数的零点的学习,培养数学抽象和数学运算素养.
    a>0
    a<0
    一次函数


    y=ax+b的图象
    一元一次方程


    y=ax+b的根
    Δ>0
    Δ=0
    Δ<0
    二次函数y=ax2+bx+c(a>0)的图象
    一元二次方程ax2+bx+c=0(a>0)的根
    二次函数y=ax2+bx+c(a>0)的零点
    判别式Δ=b2-4ac
    Δ>0
    Δ=0
    Δ<0
    方程ax2+bx+c=0(a>0)的根
    有两个相异的实数根x1,2=eq \f(-b±\r(b2-4ac),2a)
    有两个相等的实数根x1,2=-eq \f(b,2a)
    没有实数根
    二次函数y=ax2+bx+c (a>0)的图象
    二次函数y=ax2+bx+c (a>0)的零点
    有两个零点x1,2=


    eq \f(-b±\r(b2-4ac),2a)
    有一个零点x=-eq \f(b,2a)
    无零点
    求函数的零点
    函数的零点个数的论证与探究
    二次函数的零点分布探究
    相关学案

    高中数学湘教版(2019)必修 第一册2.2 从函数观点看一元二次方程导学案及答案: 这是一份高中数学湘教版(2019)必修 第一册2.2 从函数观点看一元二次方程导学案及答案,共9页。

    高中数学苏教版 (2019)必修 第一册3.3 从函数观点看一元二次方程和一元二次不等式学案: 这是一份高中数学苏教版 (2019)必修 第一册3.3 从函数观点看一元二次方程和一元二次不等式学案,共12页。学案主要包含了二次函数的零点,由二次函数的零点求参数的值,由二次函数的零点求参数的范围等内容,欢迎下载使用。

    高中数学湘教版(2019)必修 第一册2.2 从函数观点看一元二次方程学案: 这是一份高中数学湘教版(2019)必修 第一册2.2 从函数观点看一元二次方程学案,共7页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        (新)苏教版高中数学必修第一册学案:第3章 3.3.1 从函数观点看一元二次方程(含解析)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map