北师大版 (2019)必修 第一册第七章 概率2 古典概型2.2 古典概型的应用公开课教案
展开2.2 古典概型的应用(一)
互斥事件的概率加法公式
(1)在一个试验中,如果事件A和事件B是互斥事件,那么有P(A+B)=P(A)+P(B).特别地,P(A)=1-P( eq \x\t(A)).
(2)一般地,如果事件A1,A2,…,An是互斥事件,那么有P(A1+A2+…+An)=P(A1)+P(A2)+…+P(An).
思考:(1)设事件A发生的概率为P(A),事件B发生的概率为P(B),那么事件A+B发生的概率是P(A)+P(B)吗?
[提示] 不一定.当事件A与B互斥时,P(A+B)=P(A)+P(B);当事件A与B不互斥时,P(A+B)≠P(A)+P(B).
(2)从某班任选6名同学作为志愿者参加市运动会服务工作,记 “其中至少有3名女同学”为事件A,那么事件A的对立事件 eq \x\t(A)是什么?
[提示] 事件A的对立事件 eq \x\t(A)是“其中至多有2名女同学”.
1. 口袋内装有一些大小相同的红球、白球和黑球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,那么摸出黑球的概率是( )
A.0.42 B.0.28
C.0.3 D.0.7
C [∵“摸出黑球”是“摸出红球或摸出白球”的对立事件,∴“摸出黑球”的概率是1-0.42-0.28=0.3,故选C.]
2.甲、乙两队进行足球比赛,若两队战平的概率是 eq \f(1,4),乙队胜的概率是 eq \f(1,3),则甲队胜的概率是________.
eq \f(5,12) [记甲队胜为事件A,
则P(A)=1- eq \f(1,4)- eq \f(1,3)= eq \f(5,12).]
3.中国乒乓球队中的甲、乙两名队员参加奥运会乒乓球女子单打比赛,甲夺得冠军的概率为 eq \f(3,7),乙夺得冠军的概率为 eq \f(1,4),那么中国队夺得女子乒乓球单打冠军的概率为________.
eq \f(19,28) [由于事件“中国队夺得女子乒乓球单打冠军”包括事件“甲夺得冠军”和“乙夺得冠军”,但这两个事件不可能同时发生,即彼此互斥,所以可按互斥事件概率的加法公式进行计算,即中国队夺得女子乒乓球单打冠军的概率为 eq \f(3,7)+ eq \f(1,4)= eq \f(19,28).]
互斥事件的概率加法公式及应用
【例1】 一盒中装有各色球12个,其中5个红球、4个黑球、2个白球、1个绿球.从中随机取出1球,求:
(1)取出1球是红球或黑球的概率;
(2)取出的1球是红球或黑球或白球的概率.
[解] 法一:(1)从12个球中任取1球得红球有5种取法,得黑球有4种取法,得红球或黑球共有5+4=9种不同取法,任取1球有12种取法.
∴任取1球得红球或黑球的概率为P1= eq \f(9,12)= eq \f(3,4).
(2)从12个球中任取1球得红球有5种取法,得黑球有4种取法,得白球有2种取法,从而得红球或黑球或白球的概率为 eq \f(5+4+2,12)= eq \f(11,12).
法二:(利用互斥事件求概率)
记事件A1={任取1球为红球},A2={任取1球为黑球},
A3={任取1球为白球},A4={任取1球为绿球},则P(A1)= eq \f(5,12),P(A2)= eq \f(4,12),P(A3)= eq \f(2,12),P(A4)= eq \f(1,12).
根据题意知,事件A1,A2,A3,A4彼此互斥,由互斥事件概率公式,得
(1)取出1球为红球或黑球的概率为
P(A1∪A2)=P(A1)+P(A2)= eq \f(5,12)+ eq \f(4,12)= eq \f(3,4).
(2)取出1球为红球或黑球或白球的概率为
P(A1∪A2∪A3)=P(A1)+P(A2)+P(A3)= eq \f(5,12)+ eq \f(4,12)+ eq \f(2,12)= eq \f(11,12).
法三:(利用对立事件求概率)
(1)由法二知,取出1球为红球或黑球的对立事件为取出1球为白球或绿球,即A1∪A2的对立事件为A3∪A4,所以取得1球为红球或黑球的概率为
P(A1∪A2)=1-P(A3∪A4)=1-P(A3)-P(A4)=1- eq \f(2,12)- eq \f(1,12)= eq \f(9,12)= eq \f(3,4).
(2)A1∪A2∪A3的对立事件为A4,所以P(A1∪A2∪A3)=1-P(A4)=1- eq \f(1,12)= eq \f(11,12).
概率公式的应用
(1)互斥事件的概率加法公式P(A∪B)=P(A)+P(B)是一个非常重要的公式,运用该公式解题时,首先要分清事件间是否互斥,同时要学会把一个事件分拆为几个互斥事件,然后求出各事件的概率,用加法公式得出结果.
(2)当直接计算符合条件的事件个数比较烦琐时,可间接地先计算出其对立事件的个数,求得对立事件的概率,然后利用对立事件的概率加法公式P(A)+P(B)=1,求出符合条件的事件的概率.
eq \a\vs4\al([跟进训练])
1.在数学考试中,小王的成绩在90分以上(含90分)的概率是0.18,在80~89分的概率是0.51,在70~79分的概率是0.15,在60~69分的概率是0.09,在60分以下(不含60分)的概率是0.07.求:
(1)小王在数学考试中取得80分以上(含80分)成绩的概率;
(2)小王数学考试及格的概率.
[解] 设小王的成绩在90分以上(含90分)、在80~89分、在60分以下(不含60分)分别为事件A,B,C,且A,B,C两两互斥.
(1)设小王的成绩在80分以上(含80分)为事件D,则D=A+B,
所以P(D)=P(A+B)=P(A)+P(B)=0.18+0.51=0.69.
(2)设小王数学考试及格为事件E,由于事件E与事件C为对立事件,
所以P(E)=1-P(C)=1-0.07=0.93.
有序和无序型问题
【例2】 从含有两件正品a1,a2和一件次品b的三件产品中,每次任取一件.
(1)若每次取后不放回,连续取两次,求取出的两件产品中恰有一件次品的概率;
(2)若每次取后放回,连续取两次,求取出的两件产品中恰有一件次品的概率.
[解] (1)每次取出一个,取后不放回地连续取两次,其一切可能的结果组成的样本点有6个,即(a1,a2),(a1,b),(a2,a1),(a2,b),(b,a1),(b,a2).其中小括号内左边的字母表示第1次取出的产品,右边的字母表示第2次取出的产品.总的事件个数为6,而且可以认为这些样本点是等可能的.
用A表示“取出的两件中恰有一件次品”这一事件,
所以A={(a1,b),(a2,b),(b,a1),(b,a2)}.
因为事件A由4个样本点组成,所以P(A)= eq \f(4,6)= eq \f(2,3).
(2)有放回地连续取出两件,其所有可能的结果为(a1,a1),(a1,a2),(a1,b),(a2,a1),(a2,a2),(a2,b),(b,a1),(b,a2),(b,b),共9个样本点组成.由于每一件产品被取到的机会均等,因此可以认为这些样本点的出现是等可能的.用B表示“恰有一件次品”这一事件,则B={(a1,b),(a2,b),(b,a1),(b,a2)}.事件B由4个样本点组成,因而P(B)= eq \f(4,9).
解决有序和无序问题应注意两点
(1)关于不放回抽样,计算样本点个数时,既可以看做是有顺序的,也可以看做是无顺序的,其最后结果是一致的.但不论选择哪一种方式,观察的角度必须一致,否则会产生错误.
(2)关于有放回抽样,应注意在连续取出两次的过程中,因为先后顺序不同,所以(a1,b),(b,a1)不是同一个样本点.解题的关键是要清楚无论是“不放回抽取”还是“有放回抽取”,每一件产品被取出的机会都是均等的.
eq \a\vs4\al([跟进训练])
2.一个袋中装有四个形状、大小完全相同的球,球的编号分别为1,2,3,4.
(1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率;
(2)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求n<m+2的概率.
[解] (1)从袋中随机取两个球,其一切可能的结果组成的样本点有:1和2,1和3,1和4,2和3,2和4,3和4,共6个.从袋中取出的两个球的编号之和不大于4的事件有:1和2,1和3,共2个,因此所求事件的概率为P= eq \f(2,6)= eq \f(1,3).
(2)先从袋中随机取一个球,记下编号为m,放回后,再从袋中随机取一个球,记下编号为n,其一切可能的结果(m,n)有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个.
又满足条件n≥m+2的有:(1,3),(1,4),(2,4),共3个.
所以满足条件n≥m+2的事件的概率为P1= eq \f(3,16),
故满足条件n<m+2的事件的概率为1-P1=1- eq \f(3,16)= eq \f(13,16).
较复杂的古典概型问题
[探究问题]
1.计算样本点的个数的方法包含哪些?
提示:列举法,列表法和树状图法等.
2.列表法和树状图法分别适用于什么情形?
提示:列表法适合于较简单的试验的题目,样本点较多的试验不适合用列表法;树状图法适合于较复杂的试验的题目.
【例3】 有A,B,C,D四位贵宾,应分别坐在a,b,c,d四个席位上,现在这四人均未留意,在四个席位上随便就坐时.
(1)求这四人恰好都坐在自己的席位上的概率;
(2)求这四人恰好都没坐在自己的席位上的概率.
[思路点拨] eq \x(利用树状图法列举事件)→ eq \x(计算样本点个数)→ eq \x(利用古典概型概率公式计算概率)
[解] 将A,B,C,D四位贵宾就座情况用下面图形表示出来:
如上图所示,本题中的样本点的总数为24.
(1)设事件A为“这四人恰好都坐在自己的席位上”,则事件A只包含1个样本点,所以P(A)= eq \f(1,24).
(2)设事件B为“这四个人恰好都没有坐在自己席位上”,则事件B包含9个样本点,所以P(B)= eq \f(9,24)= eq \f(3,8).
1.求这四人恰好有1位坐在自己的席位上的概率.
[解] 设事件C为“这四个人恰有1位坐在自己席位上”,则事件C包含8个样本点,所以P(C)= eq \f(8,24)= eq \f(1,3).
2.求这四人中至少有2人坐在自己的席位上的概率.
[解] 法一:设事件D为“这四人中至少有2人坐在自己的席位上”,事件E为“这四人中有2人坐在自己的席位上”,则事件E包含6个样本点,则D=A+E, 且事件A与E为互斥事件,所以P(D)=P(A+E)=P(A)+P(E)= eq \f(1,24)+ eq \f(6,24)= eq \f(7,24).
法二:设事件D为“这四人中至少有2人坐在自己的席位上”,则 eq \x\t(D)=B+C,所以P(D)=1-P(B+C)=1-P(B)-P(C)=1- eq \f(3,8)- eq \f(1,3)= eq \f(7,24).
1.当事件个数没有很明显的规律,并且涉及的样本点又不是太多时,我们可借助树状图法直观地将其表示出来,这是进行列举的常用方法.树状图可以清晰准确地列出所有的样本点,并且画出一个树枝之后可猜想其余的情况.
2.在求概率时,若事件可以表示成有序数对的形式,则可以把全体样本点用平面直角坐标系中的点表示,即采用图表的形式可以准确地找出样本点的个数.故采用数形结合法求概率可以使解决问题的过程变得形象、直观,给问题的解决带来方便.
1.互斥事件概率的加法公式是一个很基本的计算公式,解题时要在具体的情景中判断各事件间是否互斥,只有互斥事件才能用概率的加法公式P(A∪B)=P(A)+P(B).
2.求复杂事件的概率通常有两种方法:
(1)将所求事件转化成彼此互斥事件的并事件;
(2)先求其对立事件的概率,再求所求事件的概率.
1.思考辨析(正确的画“√”,错误的画“×”)
(1)若A与B为互斥事件,则P(A)+P(B)=1.( )
(2)若P(A)+P(B)=1,则事件A与B为对立事件.( )
(3)某班统计同学们的数学测试成绩,事件“所有同学的成绩都在60分以上”的对立事件为“所有同学的成绩都在60分以下”.( )
[提示] (1)错误.只有当A与B为对立事件时,P(A)+P(B)=1.
(2)错误.
(3)错误.事件“所有同学的成绩都在60分以上”的对立事件为“至少有一个同学的成绩在60分以下”.
[答案] (1)× (2)× (3)×
2.甲、乙两名乒乓球运动员在一场比赛中甲获胜的概率是0.2,若不出现平局,那么乙获胜的概率为( )
A.0.2 B.0.8 C.0.4 D.0.1
B [乙获胜的概率为1-0.2=0.8.]
3.如图所示,靶子由一个中心圆面Ⅰ和两个同心圆环Ⅱ、Ⅲ构成,射手命中Ⅰ、Ⅱ、Ⅲ的概率分别为0.35、0.30、0.25,则不中靶的概率是________.
0.10 [令“射手命中圆面Ⅰ”为事件A,“命中圆环Ⅱ”为事件B,“命中圆环Ⅲ”为事件C,“不中靶”为事件D,则A、B、C彼此互斥,故射手中靶的概率为P(A∪B∪C)=P(A)+P(B)+P(C)=0.35+0.30+0.25=0.90.因为中靶和不中靶是对立事件,故不中靶的概率为P(D)=1-P(A∪B∪C)=1-0.90=0.10.]
4.先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1,2,3,4,5,6),骰子朝上的面的点数分别为x,y,求lg2xy=1的概率.
[解] 由lg2xy=1,得2x=y,其中x,y∈{1,2,3,4,5,6},所以 eq \b\lc\{(\a\vs4\al\c1(x=1,,y=2))或 eq \b\lc\{(\a\vs4\al\c1(x=2,,y=4))或 eq \b\lc\{(\a\vs4\al\c1(x=3,,y=6))共3种情况,所以P= eq \f(3,36)= eq \f(1,12).学 习 目 标
核 心 素 养
1.理解互斥事件概率加法公式、对立事件的概率公式,并能应用公式解决应用问题.(重点、易混点)
2.掌握较复杂的古典概型的概率计算问题的解法.(重点、难点)
1.通过对互斥事件概率加法公式、对立事件的概率公式的推导和应用,培养数学抽象素养.
2.通过解决较复杂的古典概型的概率问题,培养数学建模素养.
数学必修 第一册2.1 古典概型精品教案设计: 这是一份数学必修 第一册2.1 古典概型精品教案设计,共9页。
北师大版 (2019)必修 第一册2.2 古典概型的应用一等奖教案设计: 这是一份北师大版 (2019)必修 第一册2.2 古典概型的应用一等奖教案设计,共7页。
高中北师大版 (2019)2.2 分层随机抽样精品教学设计: 这是一份高中北师大版 (2019)2.2 分层随机抽样精品教学设计,共8页。