还剩11页未读,
继续阅读
所属成套资源:2020数学(文)二轮专题精品教案
成套系列资料,整套一键下载
2020数学(文)二轮教师用书:第2部分专题6第3讲 导数的综合应用
展开
第3讲 导数的综合应用
利用导数证明不等式(5年3考)
[高考解读] 利用导数证明不等式是每年高考的热点,主要考查“辅助函数法”证明不等式,难度较大.
(2018·全国卷Ⅲ)已知函数f(x)=.
(1)求曲线y=f(x)在点(0,-1)处的切线方程;
(2)证明:当a≥1时,f(x)+e≥0.
切入点:求函数f(x)的导数.
关键点:正确构造函数, 转化为函数的最值问题解决.
[解] (1)f′(x)=,f′(0)=2.
因此曲线y=f(x)在(0,-1)处的切线方程是2x-y-1=0.
(2)证明:当a≥1时,f(x)+e≥(x2+x-1+ex+1)e-x.
令g(x)=x2+x-1+ex+1,则g′(x)=2x+1+ex+1.
当x<-1时,g′(x)<0,g(x)单调递减;当x>-1时,g′(x)>0,g(x)单调递增.所以g(x)≥g(-1)=0.
因此f(x)+e≥0.
[教师备选题]
1.(2016·全国卷Ⅲ)设函数f(x)=ln x-x+1.
(1)讨论f(x)的单调性;
(2)证明当x∈(1,+∞)时,1<<x;
(3)设c>1,证明当x∈(0,1)时,1+(c-1)x>cx.
[解] (1)由题设知,f(x)的定义域为(0,+∞),f′(x)=-1,令f′(x)=0,解得x=1.
当0<x<1时,f′(x)>0,f(x)单调递增;
当x>1时,f′(x)<0,f(x)单调递减.
(2)由(1)知,f(x)在x=1处取得最大值,
最大值为f(1)=0.
所以当x≠1时,ln x<x-1.
故当x∈(1,+∞)时,ln x<x-1,ln<-1,
即1<<x.
(3)证明:由题设c>1,设g(x)=1+(c-1)x-cx,
则g′(x)=c-1-cxln c.
令g′(x)=0,解得x0=.
当x<x0时,g′(x)>0,g(x)单调递增;
当x>x0时,g′(x)<0,g(x)单调递减.
由(2)知1<<c,故0<x0<1.
又g(0)=g(1)=0,故当0<x<1时,g(x)>0.
所以当x∈(0,1)时,1+(c-1)x>cx.
2.(2017·全国卷Ⅲ)已知函数f(x)=ln x+ax2+(2a+1)x.
(1)讨论f(x)的单调性;
(2)当a<0时,证明f(x)≤--2.
[解] (1)f(x)的定义域为(0,+∞),
f′(x)=+2ax+2a+1=.
若a≥0,则当x∈(0,+∞)时,f′(x)>0,
故f(x)在(0,+∞)上单调递增.
若a<0,则当x∈时,f′(x)>0;
当x∈时,f′(x)<0.
故f(x)在上单调递增,在单调递减.
(2)证明:由(1)知,当a<0时,f(x)在x=-处取得最大值,最大值为f=ln-1-.
所以f(x)≤--2等价于ln-1-≤--2,
即ln++1≤0.
设g(x)=ln x-x+1,
则g′(x)=-1.
当x∈(0,1)时,g′(x)>0;
当x∈(1,+∞)时,g′(x)<0.
所以g(x)在(0,1)上单调递增,在(1,+∞)上单调递减.
故当x=1时,g(x)取得最大值,最大值为g(1)=0.
所以当x>0时,g(x)≤0.
从而当a<0时,ln++1≤0,
即f(x)≤--2.
利用导数证明不等式成立问题的常用方法
(1)直接将不等式转化成某个函数最值问题:若证明f(x)<g(x),x∈(a,b),可以构造函数F(x)=f(x)-g(x),如果F′(x)<0,则F(x)在(a,b)上是减函数,同时若F(a)≤0,由减函数的定义可知,x∈(a,b)时,有F(x)<0,即证明了f(x)<g(x).
(2)将待证不等式转化为两个函数的最值进行比较证明:在证明不等式中,若待证不等式的变形无法转化为一个函数的最值问题,可借助两个函数的最值证明,如证f(x)≥g(x)在D上成立,只需证明f(x)min≥g(x)max即可.
(3)若所证函数不等式通过移项后构成新函数的最值易求,可直接通过移项构造函数证明.
1.(求切线方程、不等式证明)已知函数f(x)=mex-ln x-1.
(1)当m=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若m∈(1,+∞),求证:f(x)>1.
[解] (1)当m=1时,f(x)=ex-ln x-1,
所以f′(x)=ex-,
所以f′(1)=e-1,又因为f(1)=e-1,
所以曲线y=f(x)在点(1,f(1))处的切线方程为y-(e-1)=(e-1)(x-1),
即y=(e-1)x.
(2)当m>1时,f(x)=mex-ln x-1>ex-ln x-1,
要证明f(x)>1,只需证明ex-ln x-2>0,
设g(x)=ex-ln x-2,则g′(x)=ex-(x>0),
设h(x)=ex-(x>0),则h′(x)=ex+>0,
所以函数h(x)=g′(x)=ex-在(0,+∞)上单调递增,
因为g′=e-2<0,g′(1)=e-1>0,
所以函数g′(x)=ex-在(0,+∞)上有唯一零点x0,且x0∈,
因为g′(x0)=0,所以ex0=,即ln x0=-x0,
当x∈(0,x0)时,g′(x)<0;当x∈(x0,+∞)时,g′(x)>0,
所以当x=x0时,g(x)取得最小值g(x0),
故g(x)≥g(x0)=ex0-ln x0-2=+x0-2>0,
综上可知,若m∈(1,+∞),则f(x)>1.
2.(求单调区间和极值、证明不等式)已知函数f(x)=ex-3x+3a(e为自然对数的底数,a∈R).
(1)求f(x)的单调区间与极值;
(2)求证:当a>ln ,且x>0时,>x+-3a.
[解] (1)由f(x)=ex-3x+3a,x∈R,知f′(x)=ex-3,
令f′(x)=0,得x=ln 3,
于是当x变化时,f′(x),f(x)的变化情况如下表:
x
(-∞,ln 3)
ln 3
(ln 3,+∞)
f′(x)
-
0
+
f(x)
3(1-ln 3+a)
故f(x)的单调递减区间是(-∞,ln 3),单调递增区间是(ln 3,+∞),
f(x)在x=ln 3处取得极小值,极小值为f(ln 3)=3(1-ln 3+a).
(2)证明:待证不等式等价于ex>x2-3ax+1,
设g(x)=ex-x2+3ax-1,
于是g′(x)=ex-3x+3a.
由(1)及a>ln =ln 3-1知,g′(x)的最小值为g′(ln 3)=3(1-ln 3+a)>0.
于是对任意x∈R,都有g′(x)>0,所以g(x)在R内单调递增.
于是当a>ln =ln 3-1时,对任意x∈(0,+∞),都有g(x)>g(0).
而g(0)=0,从而对任意x∈(0,+∞),g(x)>0.
即ex>x2-3ax+1,
故>x+-3a.
利用导数解决不等式恒成立中的参数问题(5年3考)
[高考解读] 利用导数解决不等式的恒成立问题也是高考的热点,主要考查分离参数法及最值法的应用.考查考生的逻辑推理与数学运算核心素养.
(2017·全国卷Ⅰ)已知函数f(x)=ex(ex-a)-a2x.
(1)讨论f(x)的单调性;
(2)若f(x)≥0,求a的取值范围.
切入点:利用导数求f′(x).
关键点:将f(x)≥0恒成立转化为f(x)的最小值大于或等于0.
[解] (1)函数f(x)的定义域为(-∞,+∞),
f′(x)=2e2x-aex-a2=(2ex+a)(ex-a).
①若a=0,则f(x)=e2x在(-∞,+∞)上单调递增.
②若a>0,则由f′(x)=0得x=ln a.
当x∈(-∞,ln a)时,f′(x)<0;
当x∈(ln a,+∞)时,f′(x)>0.
故f(x)在(-∞,ln a)上单调递减,
在(ln a,+∞)上单调递增.
③若a<0,则由f′(x)=0得x=ln.
当x∈时,f′(x)<0;
当x∈时,f′(x)>0.
故f(x)在上单调递减,
在上单调递增.
(2)①若a=0,则f(x)=e2x,所以f(x)≥0.
②若a>0,则由(1)得,当x=ln a时,f(x)取得最小值,最小值为f(ln a)=-a2ln a,
从而当且仅当-a2ln a≥0,即0<a≤1时,f(x)≥0.
③若a<0,则由(1)得,当x=ln时,f(x)取得最小值,最小值为f=a2,从而当且仅当a2≥0,即-2e≤a<0时,f(x)≥0.
综上,a的取值范围是[-2e,1].
[教师备选题]
(2016·全国卷Ⅱ)已知函数f(x)=(x+1)ln x-a(x-1).
(1)当a=4时,求曲线y=f(x)在(1,f(1))处的切线方程;
(2)若当x∈(1,+∞)时,f(x)>0,求a的取值范围.
[解] (1)f(x)的定义域为(0,+∞).
当a=4时,f(x)=(x+1)ln x-4(x-1),
f(1)=0,f′(x)=ln x+-3,f′(1)=-2.
故曲线y=f(x)在(1,f(1))处的切线方程为2x+y-2=0.
(2)当x∈(1,+∞)时,f(x)>0等价于ln x->0.
设g(x)=ln x-,
则g′(x)=-=,g(1)=0.
①当a≤2,x∈(1,+∞)时,x2+2(1-a)x+1≥x2-2x+1>0,故g′(x)>0,g(x)在(1,+∞)上单调递增,因此g(x)>0;
②当a>2时,令g′(x)=0得x1=a-1-,x2=a-1+.
由x2>1和x1x2=1得x1<1,故当x∈(1,x2)时,g′(x)<0,g(x)在(1,x2)单调递减,因此g(x)<0.
综上,a的取值范围是(-∞,2].
解决不等式恒成立问题的两种方法
(1)分离参数法:若能够将参数分离,且分离后含x变量的函数关系式的最值易求,则用分离参数法., 即:①λ≥f(x)恒成立,则λ≥f(x)max.,②λ≤f(x)恒成立,则λ≤f(x)min.
(2)最值转化法:若参数不易分离或分离后含x变量的函数关系式的最值不易求,则常用最值转化法,可通过求最值建立关于参数的不等式求解.如f(x)≥0,则只需f(x)min≥0.
1.(恒成立问题)已知函数f(x)=xln x(x>0).
(1)求f(x)的单调区间和极值;
(2)若对任意x∈(0,+∞),f(x)≥恒成立,求实数m的最大值.
[解] (1)由题意知f′(x)=ln x+1,
令f′(x)>0,得x>,令f′(x)<0,得0
∴f(x)的单调增区间是,单调减区间是,f(x)在x=处取得极小值,极小值为f=-,无极大值.
(2)由f(x)≥及f(x)=xln x,
得m≤恒成立,
问题转化为m≤min.
令g(x)=(x>0),
则g′(x)=,由g′(x)>0⇒x>1,由g′(x)<0⇒0
所以g(x)在(0,1)是减函数,在(1,+∞)上是增函数,所以g(x)min=g(1)=4,
即m≤4,所以m的最大值是4.
2.(有解问题)已知函数f(x)=aex-aex-1,g(x)=-x3-x2+6x,其中a>0.
(1)若曲线y=f(x)经过坐标原点,求该曲线在原点处的切线方程;
(2)若f(x)=g(x)+m在[0,+∞)上有解,求实数m的取值范围.
[解] (1)因为f(0)=a-1=0,所以a=1,此时f(x)=ex-ex-1.
所以f′(x)=ex-e,f′(0)=1-e.
所以曲线y=f(x)在原点处的切线方程为y=(1-e)x.
(2)因为f(x)=aex-aex-1,所以f′(x)=aex-ae=a(ex-e).
当x>1时,f′(x)>0;当0
所以f(x)在(0,1)上单调递减,在(1,+∞)上单调递增.
所以当x∈[0,+∞)时,f(x)min=f(1)=-1.
令h(x)=g(x)+m=-x3-x2+6x+m,则h′(x)=-3x2-3x+6=-3(x+2)(x-1).
当x>1时,h′(x)<0;当00.
所以h(x)在(0,1)上单调递增,在(1,+∞)上单调递减.
所以当x∈[0,+∞)时,h(x)max=h(1)=+m.
要使f(x)=g(x)+m在[0,+∞)上有解,则+m≥-1,即m≥-.
所以实数m的取值范围为.
利用导数研究函数的零点或方程根的问题(5年4考)
[高考解读] 函数零点问题也是每年高考的重点.文科注重考查函数零点个数的判定与证明,难度偏大.
(2018·全国卷Ⅱ)已知函数f(x)=x3-a(x2+x+1).
(1)若a=3,求f(x)的单调区间;
(2)证明:f(x)只有一个零点.
切入点:求f′(x),利用导数解决.
关键点:注意到x2+x+1>0恒成立,从而f(x)=0等价转化为-3a=0,即方程只有一个根.
[解] (1)当a=3时,f(x)=x3-3x2-3x-3,f′(x)=x2-6x-3.
令f′(x)=0,解得x=3-2或x=3+2.
当x∈(-∞,3-2)∪(3+2,+∞)时,f′(x)>0;
当x∈(3-2,3+2)时,f′(x)<0.
故f(x)在(-∞,3-2),(3+2,+∞)单调递增,在(3-2,3+2)单调递减.
(2)证明:由于x2+x+1>0,所以f(x)=0等价于-3a=0.
设g(x)=-3a,则g′(x)=≥0,仅当x=0时g′(x)=0,所以g(x)在(-∞,+∞)单调递增.
故g(x)至多有一个零点,从而f(x)至多有一个零点.
又f(3a-1)=-6a2+2a-=-6a-2-<0,f(3a+1)=>0,故f(x)有一个零点.
综上,f(x)只有一个零点.
[教师备选题]
1.(2014·全国卷Ⅱ)已知函数f(x)=x3-3x2+ax+2,曲线y=f(x)在点(0,2)处的切线与x轴交点的横坐标为-2.
(1)求a;
(2)证明:当k<1时,曲线y=f(x)与直线y=kx-2只有一个交点.
[解] (1)f′(x)=3x2-6x+a,f′(0)=a.
曲线y=f(x)在点(0,2)处的切线方程为y=ax+2.
由题设得-=-2,所以a=1.
(2)证明:由(1)知,f(x)=x3-3x2+x+2.
设g(x)=f(x)-kx+2=x3-3x2+(1-k)x+4.
由题设知1-k>0.
当x≤0时,g′(x)=3x2-6x+1-k>0,g(x)单调递增,
g(-1)=k-1<0,g(0)=4,所以g(x)=0在(-∞,0]上有唯一实根.
当x>0时,令h(x)=x3-3x2+4,则g(x)=h(x)+(1-k)x>h(x).
h′(x)=3x2-6x=3x(x-2),h(x)在(0,2)单调递减,在(2,+∞)单调递增,所以g(x)>h(x)≥h(2)=0.
所以g(x)=0在(0,+∞)没有实根.
综上,g(x)=0在R上有唯一实根,即曲线y=f(x)与直线y=kx-2只有一个交点.
2.(2015·全国卷Ⅰ)设函数f(x)=e2x-aln x.
(1)讨论f(x)的导函数f′(x)零点的个数;
(2)证明:当a>0时,f(x)≥2a+aln.
[解] (1)f(x)的定义域为(0,+∞),f′(x)=2e2x-(x>0).
当a≤0时,f′(x)>0,f′(x)没有零点;
当a>0时,设u(x)=e2x,v(x)=-,
因为u(x)=e2x在(0,+∞)上单调递增,v(x)=-在(0,+∞)上单调递增,
所以f′(x)在(0,+∞)上单调递增.
又f′(a)>0,当b满足0 故当a>0时,f′(x)存在唯一零点.
(2)证明:由(1),可设f′(x)在(0,+∞)上的唯一零点为x0,当x∈(0,x0)时,f′(x)<0;
当x∈(x0,+∞)时,f′(x)>0.
故f(x)在(0,x0)上单调递减,在(x0,+∞)上单调递增,所以当x=x0时,f(x)取得最小值,最小值为f(x0).
由于2e2x0-=0,
所以f(x0)=+2ax0+aln≥2a+aln .
故当a>0时,f(x)≥2a+aln .
1.求解函数零点(方程根)的个数问题的3个步骤
第一步:将问题转化为函数的零点问题,进而转化为函数的图象与x轴(或直线y=k)在该区间上的交点问题;
第二步:利用导数研究该函数在该区间上的单调性、极值(最值)、端点值等性质,进而画出其图象;
第三步:结合图象求解.
2.解决已知函数零点个数,求参数取值范围的2个技巧
(1)根据区间上零点的个数情况估计出函数图象的大致形状,从而推导出导数需要满足的条件,进而求出参数满足的条件;
(2)也可以先求导,通过求导分析函数的单调性情况,再依据函数在区间内的零点情况,推导出函数本身需要满足的条件,此时,由于函数比较复杂,常常需要构造新函数,通过多次求导,层层推理得解.
1.(判断函数零点个数)已知函数f(x)=-2ln x.
(1)讨论函数f(x)的单调性;
(2)若m=,证明:f(x)有且只有三个零点.
[解] (1)f(x)的定义域为(0,+∞),
f′(x)=m-=,
①m≤0时,∵x>0,∴f′(x)<0,∴f(x)在(0,+∞)上单调递减.
②m>0时,令f′(x)=0,即mx2-2x+m=0,
(ⅰ)m≥1时,Δ=4-4m2≤0,此时f′(x)≥0,f(x)在(0,+∞)上单调递增;
(ⅱ)00,令f′(x)=0,则x1=,x2=,
∴x∈∪时,f′(x)>0,x∈时,f′(x)<0,
∴f(x)在和上单调递增,在上单调递减.
综上,m≤0时,f(x)在(0,+∞)上单调递减;m≥1时,f(x)在(0,+∞)上单调递增;0
(2)∵m=,∴f(x)=-2ln x,
由(1)可知f(x)在(0,2-)和(2+,+∞)上单调递增,在(2-,2+)上单调递减,
又f(1)=0,且1∈(2-,2+),∴f(x)在(2-,2+)上有唯一零点x=1.
又0
∴f(x)在(0,2-)上有唯一零点.
又e3>2+,f(e3)=-f(e-3)>0,∴f(x)在(2+,+∞)上有唯一零点.
综上,当m=时,f(x)有且只有三个零点.
2.(已知函数零点求参数)已知函数f(x)=(a-1)x++ln x(a>0).
(1)讨论函数f(x)的单调性;
(2)g(x)=f(x)-m,当a=2时,g(x)在[e-1,e]上有两个不同的零点,求m的取值范围.
[解] (1)f′(x)=a-1-+==,
①当a=1时,f′(x)=,令f′(x)>0,得x>1,令f′(x)<0,得0
②当a>1时,令f′(x)>0,得x>1或x<-<0,∴f(x)在(0,1)上单调递减,在(1,+∞)上单调递增.
③当a<1时,
ⅰ)00,得
ⅱ)a=时,f′(x)≤0,∴f(x)在(0,+∞)上单调递减;
ⅲ)0,得1
(2)由(1)知,当a=2时,f(x)=x++ln x在[e-1,1]上单调递减,在(1,e]上单调递增.
∴f(x)min=f(1)=3,f(e-1)=e-1+2e-1,f(e)=e++1,f(e-1)>f(e),∴m∈.
第3讲 导数的综合应用
利用导数证明不等式(5年3考)
[高考解读] 利用导数证明不等式是每年高考的热点,主要考查“辅助函数法”证明不等式,难度较大.
(2018·全国卷Ⅲ)已知函数f(x)=.
(1)求曲线y=f(x)在点(0,-1)处的切线方程;
(2)证明:当a≥1时,f(x)+e≥0.
切入点:求函数f(x)的导数.
关键点:正确构造函数, 转化为函数的最值问题解决.
[解] (1)f′(x)=,f′(0)=2.
因此曲线y=f(x)在(0,-1)处的切线方程是2x-y-1=0.
(2)证明:当a≥1时,f(x)+e≥(x2+x-1+ex+1)e-x.
令g(x)=x2+x-1+ex+1,则g′(x)=2x+1+ex+1.
当x<-1时,g′(x)<0,g(x)单调递减;当x>-1时,g′(x)>0,g(x)单调递增.所以g(x)≥g(-1)=0.
因此f(x)+e≥0.
[教师备选题]
1.(2016·全国卷Ⅲ)设函数f(x)=ln x-x+1.
(1)讨论f(x)的单调性;
(2)证明当x∈(1,+∞)时,1<<x;
(3)设c>1,证明当x∈(0,1)时,1+(c-1)x>cx.
[解] (1)由题设知,f(x)的定义域为(0,+∞),f′(x)=-1,令f′(x)=0,解得x=1.
当0<x<1时,f′(x)>0,f(x)单调递增;
当x>1时,f′(x)<0,f(x)单调递减.
(2)由(1)知,f(x)在x=1处取得最大值,
最大值为f(1)=0.
所以当x≠1时,ln x<x-1.
故当x∈(1,+∞)时,ln x<x-1,ln<-1,
即1<<x.
(3)证明:由题设c>1,设g(x)=1+(c-1)x-cx,
则g′(x)=c-1-cxln c.
令g′(x)=0,解得x0=.
当x<x0时,g′(x)>0,g(x)单调递增;
当x>x0时,g′(x)<0,g(x)单调递减.
由(2)知1<<c,故0<x0<1.
又g(0)=g(1)=0,故当0<x<1时,g(x)>0.
所以当x∈(0,1)时,1+(c-1)x>cx.
2.(2017·全国卷Ⅲ)已知函数f(x)=ln x+ax2+(2a+1)x.
(1)讨论f(x)的单调性;
(2)当a<0时,证明f(x)≤--2.
[解] (1)f(x)的定义域为(0,+∞),
f′(x)=+2ax+2a+1=.
若a≥0,则当x∈(0,+∞)时,f′(x)>0,
故f(x)在(0,+∞)上单调递增.
若a<0,则当x∈时,f′(x)>0;
当x∈时,f′(x)<0.
故f(x)在上单调递增,在单调递减.
(2)证明:由(1)知,当a<0时,f(x)在x=-处取得最大值,最大值为f=ln-1-.
所以f(x)≤--2等价于ln-1-≤--2,
即ln++1≤0.
设g(x)=ln x-x+1,
则g′(x)=-1.
当x∈(0,1)时,g′(x)>0;
当x∈(1,+∞)时,g′(x)<0.
所以g(x)在(0,1)上单调递增,在(1,+∞)上单调递减.
故当x=1时,g(x)取得最大值,最大值为g(1)=0.
所以当x>0时,g(x)≤0.
从而当a<0时,ln++1≤0,
即f(x)≤--2.
利用导数证明不等式成立问题的常用方法
(1)直接将不等式转化成某个函数最值问题:若证明f(x)<g(x),x∈(a,b),可以构造函数F(x)=f(x)-g(x),如果F′(x)<0,则F(x)在(a,b)上是减函数,同时若F(a)≤0,由减函数的定义可知,x∈(a,b)时,有F(x)<0,即证明了f(x)<g(x).
(2)将待证不等式转化为两个函数的最值进行比较证明:在证明不等式中,若待证不等式的变形无法转化为一个函数的最值问题,可借助两个函数的最值证明,如证f(x)≥g(x)在D上成立,只需证明f(x)min≥g(x)max即可.
(3)若所证函数不等式通过移项后构成新函数的最值易求,可直接通过移项构造函数证明.
1.(求切线方程、不等式证明)已知函数f(x)=mex-ln x-1.
(1)当m=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若m∈(1,+∞),求证:f(x)>1.
[解] (1)当m=1时,f(x)=ex-ln x-1,
所以f′(x)=ex-,
所以f′(1)=e-1,又因为f(1)=e-1,
所以曲线y=f(x)在点(1,f(1))处的切线方程为y-(e-1)=(e-1)(x-1),
即y=(e-1)x.
(2)当m>1时,f(x)=mex-ln x-1>ex-ln x-1,
要证明f(x)>1,只需证明ex-ln x-2>0,
设g(x)=ex-ln x-2,则g′(x)=ex-(x>0),
设h(x)=ex-(x>0),则h′(x)=ex+>0,
所以函数h(x)=g′(x)=ex-在(0,+∞)上单调递增,
因为g′=e-2<0,g′(1)=e-1>0,
所以函数g′(x)=ex-在(0,+∞)上有唯一零点x0,且x0∈,
因为g′(x0)=0,所以ex0=,即ln x0=-x0,
当x∈(0,x0)时,g′(x)<0;当x∈(x0,+∞)时,g′(x)>0,
所以当x=x0时,g(x)取得最小值g(x0),
故g(x)≥g(x0)=ex0-ln x0-2=+x0-2>0,
综上可知,若m∈(1,+∞),则f(x)>1.
2.(求单调区间和极值、证明不等式)已知函数f(x)=ex-3x+3a(e为自然对数的底数,a∈R).
(1)求f(x)的单调区间与极值;
(2)求证:当a>ln ,且x>0时,>x+-3a.
[解] (1)由f(x)=ex-3x+3a,x∈R,知f′(x)=ex-3,
令f′(x)=0,得x=ln 3,
于是当x变化时,f′(x),f(x)的变化情况如下表:
x
(-∞,ln 3)
ln 3
(ln 3,+∞)
f′(x)
-
0
+
f(x)
3(1-ln 3+a)
故f(x)的单调递减区间是(-∞,ln 3),单调递增区间是(ln 3,+∞),
f(x)在x=ln 3处取得极小值,极小值为f(ln 3)=3(1-ln 3+a).
(2)证明:待证不等式等价于ex>x2-3ax+1,
设g(x)=ex-x2+3ax-1,
于是g′(x)=ex-3x+3a.
由(1)及a>ln =ln 3-1知,g′(x)的最小值为g′(ln 3)=3(1-ln 3+a)>0.
于是对任意x∈R,都有g′(x)>0,所以g(x)在R内单调递增.
于是当a>ln =ln 3-1时,对任意x∈(0,+∞),都有g(x)>g(0).
而g(0)=0,从而对任意x∈(0,+∞),g(x)>0.
即ex>x2-3ax+1,
故>x+-3a.
利用导数解决不等式恒成立中的参数问题(5年3考)
[高考解读] 利用导数解决不等式的恒成立问题也是高考的热点,主要考查分离参数法及最值法的应用.考查考生的逻辑推理与数学运算核心素养.
(2017·全国卷Ⅰ)已知函数f(x)=ex(ex-a)-a2x.
(1)讨论f(x)的单调性;
(2)若f(x)≥0,求a的取值范围.
切入点:利用导数求f′(x).
关键点:将f(x)≥0恒成立转化为f(x)的最小值大于或等于0.
[解] (1)函数f(x)的定义域为(-∞,+∞),
f′(x)=2e2x-aex-a2=(2ex+a)(ex-a).
①若a=0,则f(x)=e2x在(-∞,+∞)上单调递增.
②若a>0,则由f′(x)=0得x=ln a.
当x∈(-∞,ln a)时,f′(x)<0;
当x∈(ln a,+∞)时,f′(x)>0.
故f(x)在(-∞,ln a)上单调递减,
在(ln a,+∞)上单调递增.
③若a<0,则由f′(x)=0得x=ln.
当x∈时,f′(x)<0;
当x∈时,f′(x)>0.
故f(x)在上单调递减,
在上单调递增.
(2)①若a=0,则f(x)=e2x,所以f(x)≥0.
②若a>0,则由(1)得,当x=ln a时,f(x)取得最小值,最小值为f(ln a)=-a2ln a,
从而当且仅当-a2ln a≥0,即0<a≤1时,f(x)≥0.
③若a<0,则由(1)得,当x=ln时,f(x)取得最小值,最小值为f=a2,从而当且仅当a2≥0,即-2e≤a<0时,f(x)≥0.
综上,a的取值范围是[-2e,1].
[教师备选题]
(2016·全国卷Ⅱ)已知函数f(x)=(x+1)ln x-a(x-1).
(1)当a=4时,求曲线y=f(x)在(1,f(1))处的切线方程;
(2)若当x∈(1,+∞)时,f(x)>0,求a的取值范围.
[解] (1)f(x)的定义域为(0,+∞).
当a=4时,f(x)=(x+1)ln x-4(x-1),
f(1)=0,f′(x)=ln x+-3,f′(1)=-2.
故曲线y=f(x)在(1,f(1))处的切线方程为2x+y-2=0.
(2)当x∈(1,+∞)时,f(x)>0等价于ln x->0.
设g(x)=ln x-,
则g′(x)=-=,g(1)=0.
①当a≤2,x∈(1,+∞)时,x2+2(1-a)x+1≥x2-2x+1>0,故g′(x)>0,g(x)在(1,+∞)上单调递增,因此g(x)>0;
②当a>2时,令g′(x)=0得x1=a-1-,x2=a-1+.
由x2>1和x1x2=1得x1<1,故当x∈(1,x2)时,g′(x)<0,g(x)在(1,x2)单调递减,因此g(x)<0.
综上,a的取值范围是(-∞,2].
解决不等式恒成立问题的两种方法
(1)分离参数法:若能够将参数分离,且分离后含x变量的函数关系式的最值易求,则用分离参数法., 即:①λ≥f(x)恒成立,则λ≥f(x)max.,②λ≤f(x)恒成立,则λ≤f(x)min.
(2)最值转化法:若参数不易分离或分离后含x变量的函数关系式的最值不易求,则常用最值转化法,可通过求最值建立关于参数的不等式求解.如f(x)≥0,则只需f(x)min≥0.
1.(恒成立问题)已知函数f(x)=xln x(x>0).
(1)求f(x)的单调区间和极值;
(2)若对任意x∈(0,+∞),f(x)≥恒成立,求实数m的最大值.
[解] (1)由题意知f′(x)=ln x+1,
令f′(x)>0,得x>,令f′(x)<0,得0
(2)由f(x)≥及f(x)=xln x,
得m≤恒成立,
问题转化为m≤min.
令g(x)=(x>0),
则g′(x)=,由g′(x)>0⇒x>1,由g′(x)<0⇒0
即m≤4,所以m的最大值是4.
2.(有解问题)已知函数f(x)=aex-aex-1,g(x)=-x3-x2+6x,其中a>0.
(1)若曲线y=f(x)经过坐标原点,求该曲线在原点处的切线方程;
(2)若f(x)=g(x)+m在[0,+∞)上有解,求实数m的取值范围.
[解] (1)因为f(0)=a-1=0,所以a=1,此时f(x)=ex-ex-1.
所以f′(x)=ex-e,f′(0)=1-e.
所以曲线y=f(x)在原点处的切线方程为y=(1-e)x.
(2)因为f(x)=aex-aex-1,所以f′(x)=aex-ae=a(ex-e).
当x>1时,f′(x)>0;当0
所以当x∈[0,+∞)时,f(x)min=f(1)=-1.
令h(x)=g(x)+m=-x3-x2+6x+m,则h′(x)=-3x2-3x+6=-3(x+2)(x-1).
当x>1时,h′(x)<0;当0
所以h(x)在(0,1)上单调递增,在(1,+∞)上单调递减.
所以当x∈[0,+∞)时,h(x)max=h(1)=+m.
要使f(x)=g(x)+m在[0,+∞)上有解,则+m≥-1,即m≥-.
所以实数m的取值范围为.
利用导数研究函数的零点或方程根的问题(5年4考)
[高考解读] 函数零点问题也是每年高考的重点.文科注重考查函数零点个数的判定与证明,难度偏大.
(2018·全国卷Ⅱ)已知函数f(x)=x3-a(x2+x+1).
(1)若a=3,求f(x)的单调区间;
(2)证明:f(x)只有一个零点.
切入点:求f′(x),利用导数解决.
关键点:注意到x2+x+1>0恒成立,从而f(x)=0等价转化为-3a=0,即方程只有一个根.
[解] (1)当a=3时,f(x)=x3-3x2-3x-3,f′(x)=x2-6x-3.
令f′(x)=0,解得x=3-2或x=3+2.
当x∈(-∞,3-2)∪(3+2,+∞)时,f′(x)>0;
当x∈(3-2,3+2)时,f′(x)<0.
故f(x)在(-∞,3-2),(3+2,+∞)单调递增,在(3-2,3+2)单调递减.
(2)证明:由于x2+x+1>0,所以f(x)=0等价于-3a=0.
设g(x)=-3a,则g′(x)=≥0,仅当x=0时g′(x)=0,所以g(x)在(-∞,+∞)单调递增.
故g(x)至多有一个零点,从而f(x)至多有一个零点.
又f(3a-1)=-6a2+2a-=-6a-2-<0,f(3a+1)=>0,故f(x)有一个零点.
综上,f(x)只有一个零点.
[教师备选题]
1.(2014·全国卷Ⅱ)已知函数f(x)=x3-3x2+ax+2,曲线y=f(x)在点(0,2)处的切线与x轴交点的横坐标为-2.
(1)求a;
(2)证明:当k<1时,曲线y=f(x)与直线y=kx-2只有一个交点.
[解] (1)f′(x)=3x2-6x+a,f′(0)=a.
曲线y=f(x)在点(0,2)处的切线方程为y=ax+2.
由题设得-=-2,所以a=1.
(2)证明:由(1)知,f(x)=x3-3x2+x+2.
设g(x)=f(x)-kx+2=x3-3x2+(1-k)x+4.
由题设知1-k>0.
当x≤0时,g′(x)=3x2-6x+1-k>0,g(x)单调递增,
g(-1)=k-1<0,g(0)=4,所以g(x)=0在(-∞,0]上有唯一实根.
当x>0时,令h(x)=x3-3x2+4,则g(x)=h(x)+(1-k)x>h(x).
h′(x)=3x2-6x=3x(x-2),h(x)在(0,2)单调递减,在(2,+∞)单调递增,所以g(x)>h(x)≥h(2)=0.
所以g(x)=0在(0,+∞)没有实根.
综上,g(x)=0在R上有唯一实根,即曲线y=f(x)与直线y=kx-2只有一个交点.
2.(2015·全国卷Ⅰ)设函数f(x)=e2x-aln x.
(1)讨论f(x)的导函数f′(x)零点的个数;
(2)证明:当a>0时,f(x)≥2a+aln.
[解] (1)f(x)的定义域为(0,+∞),f′(x)=2e2x-(x>0).
当a≤0时,f′(x)>0,f′(x)没有零点;
当a>0时,设u(x)=e2x,v(x)=-,
因为u(x)=e2x在(0,+∞)上单调递增,v(x)=-在(0,+∞)上单调递增,
所以f′(x)在(0,+∞)上单调递增.
又f′(a)>0,当b满足0 故当a>0时,f′(x)存在唯一零点.
(2)证明:由(1),可设f′(x)在(0,+∞)上的唯一零点为x0,当x∈(0,x0)时,f′(x)<0;
当x∈(x0,+∞)时,f′(x)>0.
故f(x)在(0,x0)上单调递减,在(x0,+∞)上单调递增,所以当x=x0时,f(x)取得最小值,最小值为f(x0).
由于2e2x0-=0,
所以f(x0)=+2ax0+aln≥2a+aln .
故当a>0时,f(x)≥2a+aln .
1.求解函数零点(方程根)的个数问题的3个步骤
第一步:将问题转化为函数的零点问题,进而转化为函数的图象与x轴(或直线y=k)在该区间上的交点问题;
第二步:利用导数研究该函数在该区间上的单调性、极值(最值)、端点值等性质,进而画出其图象;
第三步:结合图象求解.
2.解决已知函数零点个数,求参数取值范围的2个技巧
(1)根据区间上零点的个数情况估计出函数图象的大致形状,从而推导出导数需要满足的条件,进而求出参数满足的条件;
(2)也可以先求导,通过求导分析函数的单调性情况,再依据函数在区间内的零点情况,推导出函数本身需要满足的条件,此时,由于函数比较复杂,常常需要构造新函数,通过多次求导,层层推理得解.
1.(判断函数零点个数)已知函数f(x)=-2ln x.
(1)讨论函数f(x)的单调性;
(2)若m=,证明:f(x)有且只有三个零点.
[解] (1)f(x)的定义域为(0,+∞),
f′(x)=m-=,
①m≤0时,∵x>0,∴f′(x)<0,∴f(x)在(0,+∞)上单调递减.
②m>0时,令f′(x)=0,即mx2-2x+m=0,
(ⅰ)m≥1时,Δ=4-4m2≤0,此时f′(x)≥0,f(x)在(0,+∞)上单调递增;
(ⅱ)0
∴x∈∪时,f′(x)>0,x∈时,f′(x)<0,
∴f(x)在和上单调递增,在上单调递减.
综上,m≤0时,f(x)在(0,+∞)上单调递减;m≥1时,f(x)在(0,+∞)上单调递增;0
由(1)可知f(x)在(0,2-)和(2+,+∞)上单调递增,在(2-,2+)上单调递减,
又f(1)=0,且1∈(2-,2+),∴f(x)在(2-,2+)上有唯一零点x=1.
又0
又e3>2+,f(e3)=-f(e-3)>0,∴f(x)在(2+,+∞)上有唯一零点.
综上,当m=时,f(x)有且只有三个零点.
2.(已知函数零点求参数)已知函数f(x)=(a-1)x++ln x(a>0).
(1)讨论函数f(x)的单调性;
(2)g(x)=f(x)-m,当a=2时,g(x)在[e-1,e]上有两个不同的零点,求m的取值范围.
[解] (1)f′(x)=a-1-+==,
①当a=1时,f′(x)=,令f′(x)>0,得x>1,令f′(x)<0,得0
③当a<1时,
ⅰ)00,得
ⅲ)0,得1
∴f(x)min=f(1)=3,f(e-1)=e-1+2e-1,f(e)=e++1,f(e-1)>f(e),∴m∈.
相关资料
更多