【期末复习】2020年九年级数学上册 期末复习专题 二次函数压轴题 专练(含答案)
展开【期末复习】2020年九年级数学上册 期末复习专题
二次函数压轴题 专练
1.在平面直角坐标系xOy中,反比例函数的图象与抛物线
交于点A(3, n).
(1)求n的值及抛物线的解析式;
(2)过点A作直线BC,交x轴于点B,交反比例函数(x>0)的图象于点C,且AC=2AB,求B、C两点的坐标;
(3)在(2)的条件下,若点P是抛物线对称轴上的一点,且点P到x轴和直线BC的距离相等,求点P的坐标.
2.如图,已知抛物线y=﹣x2﹣x+2与x轴交于A、B两点,与y轴交于点C
(1)求点A,B,C的坐标;
(2)点E是此抛物线上的点,点F是其对称轴上的点,求以A,B,E,F为顶点的平行四边形的面积;
(3)此抛物线的对称轴上是否存在点M,使得△ACM是等腰三角形?若存在,请求出点M的坐标;若不存在,请说明理由.
3.如图,已知抛物线经过点A(-1,0),B(3,0),C(0,3)三点.
(1)求抛物线的解析式;
(2)点M是线段BC上的点(不与B,C重合),过M作NM∥y轴交抛物线于N,若点M的横坐标为m,请用含m的代数式表示MN的长;
(3)在(2)的条件下,连接NB,NC,是否存在点m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由.
4.如图,一小球从斜坡O点处抛出,球的抛出路线可以用二次函数y=﹣x2+4x刻画,斜坡可以用一次函数y=x刻画.
(1)请用配方法求二次函数图象的最高点P的坐标;
(2)小球的落点是A,求点A的坐标;
(3)连接抛物线的最高点P与点O、A得△POA,求△POA的面积;
(4)在OA上方的抛物线上存在一点M(M与P不重合),△MOA的面积等于△POA的面积.请直接写出点M的坐标.
5.如图,抛物线y=x2﹣2x﹣3与x轴交于A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.
(1)求A、B、C三点的坐标;
(2)在抛物线的对称轴上找到点P,使得△PBC的周长最小,并求出点P的坐标;
(3)点G抛物线上的动点,在x轴上是否存在点F,使A、C、F、G为顶点四边形是平行四边形?如果存在,请直接写出F点坐标;如果不存在,请说明理由.
6.如图,直线y1=kx+2与x轴交于点A(m,0)(m>4),与y轴交于点B,抛物线y2=ax2﹣4ax+c(a<0)经过A,B两点.P为线段AB上一点,过点P作PQ∥y轴交抛物线于点Q.
(1)当m=5时,
①求抛物线的关系式;
②设点P的横坐标为x,用含x的代数式表示PQ的长,并求当x为何值时,PQ=;
(2)若PQ长的最大值为16,试讨论关于x的一元二次方程ax2﹣4ax﹣kx=h的解的个数与h的取值范围的关系.
7.如图,抛物线y=ax2+2.5x-2与x轴相交于点A(1,0)与点B,与y轴相交于点C.
(1)确定抛物线的解析式;
(2)连接AC、BC,△AOC与△COB相似吗?并说明理由;
(3)点N在抛物线的对称轴上,在抛物线上是否存在点M,使得以点N、M、A、B为顶点的四边形是平行四边形?若存在,求出对应的点M、N的坐标;若不存在,请说明理由.
8.如图,已知抛物线y=﹣x2+bx+c与x轴正半轴交于点A(3,0),与y轴交于点B(0,3),点P是x轴上一动点,过点P作x轴的垂线交抛物线于点C,交直线AB于点D,设P(x,0).
(1)求抛物线的函数表达式;
(2)当0<x<3时,求线段CD的最大值;
(3)在△PDB和△CDB中,当其中一个三角形的面积是另一个三角形面积的2倍时,求相应x的值;
(4)过点B,C,P的外接圆恰好经过点A时,x的值为 .(直接写出答案)
9.如图,抛物线y=ax2+bx+c的顶点为M(﹣2,﹣4),与x轴交于A、B两点,且A(﹣6,0),与y轴交于点C.
(1)求抛物线的函数解析式;
(2)求△ABC的面积;
(3)能否在抛物线第三象限的图象上找到一点P,使△APC的面积最大?若能,请求出点P的坐标;若不能,请说明理由.
10.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=-1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.
(1)若直线y=mx+n经过B,C两点,求直线BC和抛物线的解析式;
(2)在抛物线的对称轴x=-1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;
(3)设点P为抛物线的对称轴x=-1上的一个动点,求使△BPC为直角三角形时点P的坐标.
参考答案
1.
2.解:
3.解:(1)y=-x2+2x+3
(2)易求直线BC的解析式为y=-x+3,∴M(m,-m+3),
又∵MN⊥x轴,∴N(m,-m2+2m+3),
∴MN=(-m2+2m+3)-(-m+3)=-m2+3m(0<m<3)
(3)S△BNC=S△CMN+S△MNB=0.5|MN|·|OB|,
∴当|MN|最大时,△BNC的面积最大,MN=-m2+3m=-(m-1.5)2+2.25,
所以当m=1.5时,△BNC的面积最大为3.75.
4.分析:(1)利用配方法抛物线的一般式化为顶点式,即可求出二次函数图象的最高点P的坐标;
(2)联立两解析式,可求出交点A的坐标;
(3)作PQ⊥x轴于点Q,AB⊥x轴于点B.根据S△POA=S△POQ+S△梯形PQBA﹣S△BOA,代入数值计算即可求解;
(4)过P作OA的平行线,交抛物线于点M,连结OM、AM,由于两平行线之间的距离相等,根据同底等高的两个三角形面积相等,可得△MOA的面积等于△POA的面积.设直线PM的解析式为y=x+b,将P(2,4)代入,求出直线PM的解析式为y=x+3.再与抛物线的解析式联立,得到方程组,解方程组即可求出点M的坐标.
解答: 解:(1)由题意得,y=﹣x2+4x=﹣(x﹣2)2+4,
故二次函数图象的最高点P的坐标为(2,4);
(2)联立两解析式可得:,解得:,或.
故可得点A的坐标为(,);
(3)如图,作PQ⊥x轴于点Q,AB⊥x轴于点B.
S△POA=S△POQ+S△梯形PQBA﹣S△BOA=×2×4+×(+4)×(﹣2)﹣××=4+﹣=;
(4)过P作OA的平行线,交抛物线于点M,连结OM、AM,则△MOA的面积等于△POA的面积.
设直线PM的解析式为y=x+b,
∵P的坐标为(2,4),∴4=×2+b,解得b=3,∴直线PM的解析式为y=x+3.
由,解得,,∴点M的坐标为(,).
5.(1)A(﹣1,0)B(3,0)C(2,﹣3)
设直线AC的解析式为:y=kx+b,解得,k=-1,b=-1,∴直线AC的函数解析式是y=﹣x﹣1,
由抛物线的对称性可知,点A与点B关于对称轴x=1对称,
∴连接AC与x=1交于点P,点即为所求,当x=1时,y=﹣2,则点P的坐标为(1,﹣2);
(3)存在4个这样的点F,F点坐标是:(﹣3,0)或(1,0)或(4+,0)或(4﹣,0)
6.【解答】解:(1)①∵m=5,∴点A的坐标为(5,0),
把A(5,0)代入y1=kx+2得5k+2=0,解得k=﹣,∴直线解析式为y1=﹣x+2,
当x=0时,y1=2,∴点B的坐标为(0,2).
将A(5,0),B(0,2)代入,得,解得,
∴抛物线的表达式为y=﹣x2+x+2;
②设点P的坐标为(x,﹣ x+2),则Q(x,﹣ x2+x+2),
∴PQ=﹣x2+x+2﹣(﹣x+2)=﹣x2+2x,而PQ=,
∴﹣x2+2x=,解得:x1=1,x2=4,∴当x=1或x=4时,PQ=;
(2)设P(x,kx+2),则Q(x,ax2﹣4ax+2),PQ的长用l表示,
∴l=ax2﹣4ax+2﹣(kx+2)=ax2﹣(4a+k)x,∵PQ长的最大值为16,如图,
当h=16时,一元二次方程ax2﹣4ax﹣kx=h有两个相等的实数解;
当h>16时,一元二次方程ax2﹣4ax﹣kx=h没有实数解;
当0<h<16时,一元二次方程ax2﹣4ax﹣kx=h有两个解.
7.解:(1)∵把A(1,0)代入得:a+2.5﹣2=0,解得a=-0.5,∴y=-0.5x2+2.5x-2;
(2)相似.∵令﹣0.5x2+2.5x﹣2=0,解得x1=1,x2=4,∴A(1,0),B(4,0).
∵x=0时,y=﹣2,∴C(0,﹣2).∴OC=2,OA=1,OB=4
∴==0.5.又∵∠COA=∠BOC=90°,∴△AOC∽△COB;
(3)存在.对称轴为x=2.5,交x轴于点Q,顶点坐标为(2.5,9/8).
①如图1,AB为对角线,若四边形AMBN为平行四边形,则QM=QN,
∴M(2.5,9/8),N(2.5,﹣9/8);
②如图2,AB为一边,若四边形ABMN为平行四边形,则MN∥AB,MN=AB=3,
设N(2.5,n)则有M(﹣0.5,n)或(5.5,n)将M坐标代入解析式:n=﹣27/8.
综上所述,M(2.5, 9/8),N(2.5,﹣9/8)或M(﹣0.5,﹣27/8),N(2.5,﹣27/8)
或M(5.5,﹣27/8),N(2.5,﹣27/8).
8.【解答】解:(1)∵抛物线y=﹣x2+bx+c与x轴正半轴交于点A(3,0),与y轴交于点B(0,3),∴﹣9+3b+c=0,c=3,∴b=2,∴抛物线解析式为y=﹣x2+2x+3;
(2)∵A(3,0),B(0,3),∴直线AB解析式为y=﹣x+3,
∵P(x,0).∴D(x,﹣x+3),C(x,﹣x2+2x+3),
∵0<x<3,∴CD=﹣x2+2x+3﹣(﹣x+3)=﹣x2+3x=﹣(x﹣)2+,当x=时,CD最大=;
(3)由(2)知,CD=|﹣x2+3x|,DP=|﹣x+3|
①当S△PDB=2S△CDB时,∴PD=2CD,即:2|﹣x2+3x|=|﹣x+3|,∴x=±或x=3(舍),
②当2S△PDB=S△CDB时,∴2PD=CD,即:|﹣x2+3x|=2|﹣x+3|,∴x=±2或x=3(舍),
即:综上所述,x=±或x=±2;
(4)直线AB解析式为y=﹣x+3,∴线段AB的垂直平分线l的解析式为y=x,
∵过点B,C,P的外接圆恰好经过点A,
∴过点B,C,P的外接圆的圆心既是线段AB的垂直平分线上,也在线段PC的垂直平分线上,
∴,∴x=±,故答案为:
9.【解答】解:(1)设此函数的解析式为y=a(x+h)2+k,
∵函数图象顶点为M(﹣2,﹣4),∴y=a(x+2)2﹣4,
又∵函数图象经过点A(﹣6,0),∴0=a(﹣6+2)2﹣4解得a=,
∴此函数的解析式为y=(x+2)2﹣4,即y=x2+x﹣3;
(2)∵点C是函数y=x2+x﹣3的图象与y轴的交点,∴点C的坐标是(0,﹣3),
又当y=0时,有y=x2+x﹣3=0,解得x1=﹣6,x2=2,∴点B的坐标是(2,0),
则S△ABC=|AB|•|OC|=×8×3=12;
(3)假设存在这样的点,过点P作PE⊥x轴于点E,交AC于点F.
设E(x,0),则P(x, x2+x﹣3),
设直线AC的解析式为y=kx+b,
∵直线AC过点A(﹣6,0),C(0,﹣3),∴,解得,
∴直线AC的解析式为y=﹣x﹣3,∴点F的坐标为F(x,﹣x﹣3),
则|PF|=﹣x﹣3﹣(x2+x﹣3)=﹣x2﹣x,
∴S△APC=S△APF+S△CPF=|PF|•|AE|+|PF|•|OE|
=|PF|•|OA|=(﹣x2﹣x)×6=﹣x2﹣x=﹣(x+3)2+,
∴当x=﹣3时,S△APC有最大值,此时点P的坐标是P(﹣3,﹣).
10.解:(1)依题意得a=-1,b=-2,c=3∴抛物线解析式为y=-x2-2x+3.
∵对称轴为直线x=-1,且抛物线经过A(1,0),∴点B的坐标为(-3,0).
把B(-3,0),C(0,3)分别代入直线y=mx+n,得-3m+n=0,n=3解得m=1,n=3
∴直线BC的解析式为y=x+3;
(2)设直线BC与对称轴x=-1的交点为M,则此时MA+MC的值最小.
把x=-1代入y=x+3得y=2,∴点M的坐标为(-1,2),
即当点M到点A的距离与到点C的距离之和最小时点M的坐标为(-1,2);
(3)设点P的坐标为(-1,t).又∵点B的坐标为(-3,0),点C的坐标为(0,3),
∴BC2=18,PB2=(-1+3)2+t2=4+t2,PC2=(-1)2+(t-3)2=t2-6t+10.
①若点B为直角顶点,则BC2+PB2=PC2,即18+4+t2=t2-6t+10,解得t=-2;
②若点C为直角顶点,则BC2+PC2=PB2,即18+t2-6t+10=4+t2,解得t=4;
③若点P为直角顶点,则PB2+PC2=BC2,即4+t2+t2-6t+10=18,解得t1=,t2=.综上所述,点P的坐标为(-1,-2)或(-1,4)或(-1,)或(-1,).