【期末复习】2020年九年级数学上册 期末复习专题 旋转压轴题 专练(含答案)
展开【期末复习】2020年九年级数学上册 期末复习专题
旋转压轴题 专练
1.如图,在Rt△AOB中,∠ABO=30°,BO=4,分别以OA、OB边所在的直线建立平面直角坐标系,D点为x轴正半轴上的一点,以OD为一边在第一象限内作等边△ODE.
(Ⅰ)如图①当E点恰好落在线段AB上时,求E点坐标;
(Ⅱ)若点D从原点出发沿x轴正方向移动,设点D到原点的距离为x,△ODE与△AOB重叠部分的面积为y,当E点到达△AOB的外面,且点D在点B左侧时,写出y与x的函数关系式,并写出自变量x的取值范围;
(Ⅲ)在(Ⅰ)问的条件下,将△ODE在线段OB上向右平移如图②,图中是否存在一条与线段OO′始终相等的线段?如果存在,请直接指出这条线段;如果不存在,请说明理由.
2.如图,四边形OABC是边长为4的正方形,点P为OA边上任意一点(与点O、A不重合),连接CP,过点P作PM⊥CP交AB于点D,且PM=CP,过点M作MN∥OA,交BO于点N,连接ND、BM,设OP=t.
(1)求点M的坐标(用含t的代数式表示).
(2)试判断线段MN的长度是否随点P的位置的变化而改变?并说明理由.
(3)当t为何值时,四边形BNDM的面积最小.
3.如图,将一个正方形纸片OABC放置在平面直角坐标系中,其中A(1,0),C(0,1),P为AB边上一个动点,折叠该纸片,使O点与P点重合,折痕l与OP交于点M,与对角线AC交于Q点
(Ⅰ)若点P的坐标为(1,0.25),求点M的坐标;
(Ⅱ)若点P的坐标为(1,t)
①求点M的坐标(用含t的式子表示)(直接写出答案)
②求点Q的坐标(用含t的式子表示)(直接写出答案)
(Ⅲ)当点P在边AB上移动时,∠QOP的度数是否发生变化?如果你认为不发生变化,写出它的角度的大小.并说明理由;如果你认为发生变化,也说明理由.
4.如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.
(1)操作发现:
如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:
①线段DE与AC的位置关系是 ;
②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是 .
(2)猜想论证:
当△DEC绕点C旋转到如图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想.
(3)拓展探究:
已知∠ABC=60°,点D是角平分线上一点,BD=CD=4,DE∥AB交BC于点E(如图4).若在射线BA上存在点F,使S△DCF=S△BDE,请直接写出相应的BF的长.
5.在△ABC中,AB=6,AC=BC=5,将△ABC绕点A按顺时针方向旋转,得到△ADE,旋转角为α(0°<α<180°),点B的对应点为点D,点C的对应点为点E,连接BD,BE.
(1)如图,当α=60°时,延长BE交AD于点F.
①求证:△ABD是等边三角形;
②求证:BF⊥AD,AF=DF;
③请直接写出BE的长;
(2)在旋转过程中,过点D作DG垂直于直线AB,垂足为点G,连接CE,当∠DAG=∠ACB,且线段DG与线段AE无公共点时,请直接写出BE+CE的值.
6.在锐角△ABC中,AB=4,BC=5,∠ACB=45°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1.
(1)如图1,当点C1在线段CA的延长线上时,求∠CC1A1的度数;
(2)如图2,连接AA1,CC1.若△ABA1的面积为4,求△CBC1的面积;
(3)如图3,点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B按逆时针方向旋转过程中,点P的对应点是点P1,求线段EP1长度的最大值与最小值.
7.(1)如图1,在线段AB上取一点C(BC>AC),分别以AC、BC为边在同一侧作等边ACD与等边BCE,连结AE、BD,则ACE经过怎样的变换(平移、轴对称、旋转)能得到DCB?请写出具体的变换过程;(不必写理由)
(2)如图2,在线段AB上取一点C(BC>AC),如果以AC、BC为边在同一侧作正方形ACDG与正方形CBEF,连结EG,取EG的中点M,设 DM的延长线交EF于N,并且DG=NE;请探究DM与FM的关系,并加以证明;
(3)在图2的基础上,将正方形CBEF绕点C顺时针旋转(如图3),使得A、C、E在同一条直线上,请你继续探究线段MD、MF的关系,并加以证明.
8.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.
(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF;
(2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:EF2=ME2+NF2;
(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系.
9.如图1若△ABC和△ADE为等边三角形,M,N分别EB,CD的中点,易证:CD=BE,△AMN是等边三角形.
(1)当把△ADE绕A点旋转到图2位置时,CD=BE是否仍然成立?若成立请证明,若不成立请说明理由;
(2)当△ADE绕A点旋转到图3位置时,△AMN是否还是等边三角形?若是,请给出证明,并求出当AB=2AD时,△ADE与△ABC及△AMN的面积之比;若不是,请说明理由.
10.如图1,△ABC是等腰直角三角形,四边形ADEF是正方形,点D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立.
(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.
(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G.
①求证:BD⊥CF; ②当AB=4,AD=时,求线段BG的长.
参考答案
1.解:(1)作EH⊥OB于点H,∵△OED是等边三角形,∴∠EOD=60°.
又∵∠ABO=30°,∴∠OEB=90°.∵BO=4,∴OE=OB=2.
∵△OEH是直角三角形,且∠OEH=30°∴OH=1,EH=,∴E(1,).
(2)当2<x<4,符合题意,如图,
所求重叠部分四边形OD′NE的面积为:
S△OD′E﹣S△E′EN=x2﹣E′E×EN=x2﹣×(x﹣2)=﹣x2+2x﹣2
(3)存在线段EF=OO'.∵∠ABO=30°,∠EDO=60°∴∠ABO=∠DFB=30°,∴DF=DB.
∴OO′=4﹣2﹣DB=2﹣DB=2﹣DF=ED﹣FD=EF
2.【解答】解:(1)作ME⊥x轴于E,如图1所示:则∠MEP=90°,ME∥AB,
∴∠MPE+∠PME=90°,
∵四边形OABC是正方形,∴∠POC=90°,OA=OC=AB=BC=4,∠BOA=45°,
∵PM⊥CP,∴∠CPM=90°,∴∠MPE+∠CPO=90°,∴∠PME=∠CPO,
在△MPE和△PCO中,,∴△MPE≌△PCO(AAS),
∴ME=PO=t,EP=OC=4,∴OE=t+4,∴点M的坐标为:(t+4,t);
(2)线段MN的长度不发生改变;理由如下:连接AM,如图2所示:
∵MN∥OA,ME∥AB,∠MEA=90°,∴四边形AEMF是矩形,
又∵EP=OC=OA,∴AE=PO=t=ME,∴四边形AEMF是正方形,
∴∠MAE=45°=∠BOA,∴AM∥OB,∴四边形OAMN是平行四边形,∴MN=OA=4;
(3)∵ME∥AB,∴△PAD∽△PEM,∴,即,∴AD=﹣t2+t,
∴BD=AB﹣AD=4﹣(﹣t2+t)=t2﹣t+4,∵MN∥OA,AB⊥OA,∴MN⊥AB,
∴四边形BNDM的面积S=MN•BD=×4(t2﹣t+4)=(t﹣2)2+6,∴S是t的二次函数,
∵>0,∴S有最小值,当t=2时,S的值最小;
∴当t=2时,四边形BNDM的面积最小.
3.解:(Ⅰ)过M作ME⊥x轴于点E,如图1,
由题意可知M为OP中点,∴E为OA中点,∴OE=OA=,ME=AP=,∴M点坐标为(,);
(Ⅱ)①同(Ⅰ),当P(1,t)时,可得M(,t);
②设直线OP的解析式为y=kx,把P(1,t)代入可求得k=t,
∴直线OP解析式为y=tx,又l⊥OP,
∴可设直线MQ解析式为y=﹣x+b,且过点M(,),
把M点坐标代入可得=﹣+b,解得b=,∴直线l解析式为y=﹣x+,
又直线AC解析式为y=﹣x+1,
联立直线l和直线AC的解析式可得,解得,
∴Q点坐标为(,);
(Ⅲ)不变化,∠QOP=45°.理由如下:由(Ⅱ)②可知Q点坐标为(,),
∴OQ2=PQ2=()2+()2=,
又P(1,t),∴OP2=1+t2,∴OQ2+QP2=OP2,
∴△OPQ是以OP为斜边的等腰直角三角形,∴∠QOP=45°,即∠QOP不变化.
4.解:(1)①∵△DEC绕点C旋转点D恰好落在AB边上,∴AC=CD,
∵∠BAC=90°﹣∠B=90°﹣30°=60°,∴△ACD是等边三角形,∴∠ACD=60°,
又∵∠CDE=∠BAC=60°,∴∠ACD=∠CDE,∴DE∥AC;
②∵∠B=30°,∠C=90°,∴CD=AC=AB,
∴BD=AD=AC,根据等边三角形的性质,△ACD的边AC、AD上的高相等,
∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),即S1=S2;
故答案为:DE∥AC;S1=S2;
(2)如图,∵△DEC是由△ABC绕点C旋转得到,∴BC=CE,AC=CD,
∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°﹣90°=90°,∴∠ACN=∠DCM,
∵在△ACN和△DCM中,,∴△ACN≌△DCM(AAS),∴AN=DM,
∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),即S1=S2;
(3)如图,过点D作DF1∥BE,易求四边形BEDF1是菱形,所以BE=DF1,且BE、DF1上的高相等,
此时S△DCF1=S△BDE;过点D作DF2⊥BD,∵∠ABC=60°,F1D∥BE,∴∠F2F1D=∠ABC=60°,
∵BF1=DF1,∠F1BD=∠ABC=30°,∠F2DB=90°,∴∠F1DF2=∠ABC=60°,
∴△DF1F2是等边三角形,∴DF1=DF2,
∵BD=CD,∠ABC=60°,点D是角平分线上一点,∴∠DBC=∠DCB=×60°=30°,
∴∠CDF1=180°﹣∠BCD=180°﹣30°=150°,∠CDF2=360°﹣150°﹣60°=150°,
∴∠CDF1=∠CDF2,
∵在△CDF1和△CDF2中,,∴△CDF1≌△CDF2(SAS),∴点F2也是所求的点,
∵∠ABC=60°,点D是角平分线上一点,DE∥AB,∴∠DBC=∠BDE=∠ABD=×60°=30°,
又∵BD=4,∴BE=×4÷cos30°=2÷=,
∴BF1=,BF2=BF1+F1F2=+=,故BF的长为或.
5.解:(1)①∵△ABC绕点A顺时针方向旋转60°得到△ADE,
∴AB=AD,∠BAD=60°,∴△ABD是等边三角形;
②由①得△ABD是等边三角形,∴AB=BD,
∵△ABC绕点A顺时针方向旋转60°得到△ADE,∴AC=AE,BC=DE,
又∵AC=BC,∴EA=ED,∴点B、E在AD的中垂线上,∴BE是AD的中垂线,
∵点F在BE的延长线上,∴BF⊥AD,AF=DF;
③由②知BF⊥AD,AF=DF,∴AF=DF=3,∵AE=AC=5,∴EF=4,
∵在等边三角形ABD中,BF=AB•sin∠BAF=6×=3,∴BE=BF﹣EF=3﹣4;
(2)如图所示,
∵∠DAG=∠ACB,∠DAE=∠BAC,∴∠ACB+∠BAC+∠ABC=∠DAG+∠DAE+∠ABC=180°,
又∵∠DAG+∠DAE+∠BAE=180°,∴∠BAE=∠ABC,
∵AC=BC=AE,∴∠BAC=∠ABC,∴∠BAE=∠BAC,∴AB⊥CE,且CH=HE=CE,
∵AC=BC,∴AH=BH=AB=3,则CE=2CH=8,BE=5,∴BE+CE=13.
6.解:(1)由旋转的性质可得∠A1C1B =∠ACB =45°,BC=BC1 ∴∠CC1B =∠C1CB =45°
∴∠CC1A1=∠CC1B+∠A1C1B=45°+45°=90°
(2)∵△ABC≌△A1BC1 ∴BA=BA1,BC=BC1,∠ABC=∠A1BC1
∴ , ∠ABC+∠ABC1=∠A1BC1+∠ABC1 ∴∠ABA1=∠CBC1 ∴△ABA1∽△CBC1
∴ ∵ ∴
(3)过点B作BD⊥AC,D为垂足
∵△ABC为锐角三角形 ∴点D在线段AC上Rt△BCD中,BD=BC×sin45°=
P在AC上运动至垂足点D,△ABC绕点B旋转,
使点P的对应点P1在线段AB上时,EP1最小,最小值为-2② 当P在AC上运动至点C,△ABC绕点B旋转,使点P的对应点P1在线段AB的延长线上时,EP1最大,最大值为2+5=7 。
7.(1)将ACE绕点C顺时针旋转60°后能得到DCB
(2) 如图(2),答:相等且垂直.先证MGD≌MEN∴DM=NM.在中,.
∵NE=GD, GD=CD,∴NE=CD,∴FN=FD即FM⊥DM,∴DM与 FM相等且垂直
(3)如图(3),答:相等且垂直.延长DM交CE于N,连结DF、FN先证MGD≌MNE∴DM =NM, NE=DG.
∵∠DCF=∠FEN=45°,DC=DG=NE,FC=FE,∴DCF≌NEF,∴DF=FN, ∠DFC=∠NFE,可证∠DFN=90°,
即FM=DM, FM⊥DM∴DM与 FM相等且垂直
8.【解答】(1)证明:∵△ADF绕着点A顺时针旋转90°,得到△ABG,∴AF=AG,∠FAG=90°,
∵∠EAF=45°,∴∠GAE=45°,
在△AGE与△AFE中,,∴△AGE≌△AFE(SAS);
(2)证明:设正方形ABCD的边长为a.将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.
则△ADF≌△ABG,DF=BG.由(1)知△AEG≌△AEF,∴EG=EF.
∵∠CEF=45°,∴△BME、△DNF、△CEF均为等腰直角三角形,
∴CE=CF,BE=BM,NF=DF,∴a﹣BE=a﹣DF,∴BE=DF,∴BE=BM=DF=BG,
∴∠BMG=45°,∴∠GME=45°+45°=90°,∴EG2=ME2+MG2,
∵EG=EF,MG=BM=DF=NF,∴EF2=ME2+NF2;
(3)解:EF2=2BE2+2DF2.
如图所示,延长EF交AB延长线于M点,交AD延长线于N点,将△ADF绕着点A顺时针旋转90°,得到△AGH,连结HM,HE.由(1)知△AEH≌△AEF,则由勾股定理有(GH+BE)2+BG2=EH2,即(GH+BE)2+(BM﹣GM)2=EH2
又∴EF=HE,DF=GH=GM,BE=BM,所以有(GH+BE)2+(BE﹣GH)2=EF2,即2(DF2+BE2)=EF2
9.解:(1)CD=BE.理由如下:
∵△ABC和△ADE为等边三角形 ∴AB=AC,AE=AD,∠BAC=∠EAD=60o
∵∠BAE =∠BAC-∠EAC =60o-∠EAC,∠DAC =∠DAE-∠EAC =60o-∠EAC,
∴∠BAE=∠DAC, ∴△ABE ≌ △ACD ∴CD=BE
(2)△AMN是等边三角形.理由如下:
∵△ABE ≌ △ACD,∴∠ABE=∠ACD.
∵M、N分别是BE、CD的中点,BM=
∵AB=AC,∠ABE=∠ACD, ∴△ABM ≌ △ACN.∴AM=AN,∠MAB=∠NAC.
∴∠NAM=∠NAC+∠CAM=∠MAB+∠CAM=∠BAC=60o ∴△AMN是等边三角形.
设AD=a,则AB=2a.∵AD=AE=DE,AB=AC,∴CE=DE.
∵△ADE为等边三角形, ∴∠DEC=120 o, ∠ADE=60o,
∴∠EDC=∠ECD=30o , ∴∠ADC=90o.
∴在Rt△ADC中,AD=a,∠ACD=30 o , ∴ CD=.
∵N为DC中点, ∴, ∴.
∵△ADE,△ABC,△AMN为等边三角形,∴S△ADE∶S△ABC∶ S△AMN
解法二:△AMN是等边三角形.理由如下:
∵△ABE ≌ △ACD,M、N分别是BE、CN的中点,∴AM=AN,NC=MB.
∵AB=AC,∴△ABM ≌ △ACN,∴∠MAB=∠NAC,∴∠NAM=∠NAC+∠CAM=∠MAB+∠CAM=∠BAC=60o
∴△AMN是等边三角形,设AD=a,则AD=AE=DE= a,AB=BC=AC=2a
易证BE⊥AC,∴BE=,
∴ ∴
∵△ADE,△ABC,△AMN为等边三角形 ∴S△ADE∶S△ABC∶ S△AMN
10. (1)BD=CF成立.理由:∵△ABC是等腰直角三角形,四边形ADEF是正方形,
∴AB=AC,AD=AF,∠BAC=∠DAF=90°.
∵∠BAD=∠BAC-∠DAC,∠CAF=∠DAF-∠DAC,∴∠BAD=∠CAF,∴△BAD≌△CAF(SAS).∴BD=CF.
(2)①证明:设BG交AC于点M.
∵△BAD≌△CAF(已证),∴∠ABM=∠GCM.∵∠BMA=∠CMG,∴△BMA∽△CMG.
∴∠BGC=∠BAC=90°.∴BD⊥CF.
②过点F作FN⊥AC于点N.
∵在正方形ADEF中,AD=,∴AN=FN=AE=1.
∵在等腰直角△ABC中,AB=4,∴CN=AC-AN=3,BC==4.
∴在Rt△FCN中,tan∠FCN==.∴在Rt△ABM中,
tan∠ABM==tan∠FCN=.∴AM=×AB=.∴CM=AC-AM=4-=,BM==.
∵△BMA∽△CMG,∴ =.∴=.∴CG=.
∴在Rt△BGC中,BG==.