年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    【高考复习】2020年高考数学(文数) 圆锥曲线 大题练(含答案解析)

    【高考复习】2020年高考数学(文数) 圆锥曲线 大题练(含答案解析)第1页
    【高考复习】2020年高考数学(文数) 圆锥曲线 大题练(含答案解析)第2页
    【高考复习】2020年高考数学(文数) 圆锥曲线 大题练(含答案解析)第3页
    还剩5页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    【高考复习】2020年高考数学(文数) 圆锥曲线 大题练(含答案解析)

    展开

    【高考复习】2020年高考数学(文数) 圆锥曲线 大题练1.已知抛物线E:y2=2px(p>0)的焦点F,E上一点(3,m)到焦点的距离为4.(1)求抛物线E的方程;(2)过F作直线l,交抛物线E于A,B两点,若直线AB中点的纵坐标为-1,求直线l的方程.                2.已知椭圆(a>b>0)的离心率为,且经过点P(1,1.5),过它的两个焦点F1,F2分别作直线l1与l2,l1交椭圆于A,B两点,l2交椭圆于C,D两点,且l1l2.(1)求椭圆的标准方程;(2)求四边形ACBD的面积S的取值范围.                3.已知椭圆C:(a>b>0)的离心率为,点(2,)在C上.(1)求C的方程;(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M,证明:直线OM的斜率与直线l的斜率的乘积为定值.                4.已知椭圆的中心是坐标原点O,焦点在x轴上,短轴长为2,且两个焦点和短轴的两个端点恰为一个正方形的顶点.过右焦点F与x轴不垂直的直线l交椭圆于P,Q两点.(1)求椭圆的方程;(2)在线段OF上是否存在点M(m,0),使得|MP|=|MQ|?若存在,求出m的取值范围;若不存在,请说明理由.                  5.在平面直角坐标系中,直线x-y+m=0不过原点,且与椭圆=1有两个不同的公共点A,B.(1)求实数m的取值所组成的集合M;(2)是否存在定点P使得任意的mM,都有直线PA,PB的倾斜角互补?若存在,求出所有定点P的坐标;若不存在,请说明理由.                  6.已知椭圆C:=1(a>b>0)的焦距为4,P是椭圆C上的点.(1)求椭圆C的方程;(2)O为坐标原点,A,B是椭圆C上不关于坐标轴对称的两点,设=证明:直线AB的斜率与OD的斜率的乘积为定值.                     7.如图,椭圆C:=1(a>b>0)的左顶点与上顶点分别为A,B,右焦点为F,点P在椭圆C上,且PFx轴,若ABOP,且|AB|=2.(1)求椭圆C的方程;(2)已知Q是C上不同于长轴端点的任意一点,在x轴上是否存在一点D,使得直线QA与QD的斜率乘积恒为-,若存在,求出点D的坐标,若不存在,说明理由.                8.设抛物线C:y2=4x的焦点为F,过F且斜率为k(k>0)的直线l与C交于A,B两点,|AB|=8.(1)求l的方程;(2)求过点A,B且与C的准线相切的圆的方程.                    
    答案解析1.解:(1)抛物线E:y2=2px(p>0)的准线方程为x=-由抛物线的定义可知3-  =4,解得p=2,抛物线E的方程为y2=4x.(2)法一:由(1)得抛物线E的方程为y2=4x,焦点F(1,0),设A,B两点的坐标分别为A(x1,y1),B(x2,y2),两式相减,整理得 =(x1≠x2).线段AB中点的纵坐标为-1,直线l的斜率kAB===-2,直线l的方程为y-0=-2(x-1),即2x+y-2=0.法二:由(1)得抛物线E的方程为y2=4x,焦点F(1,0),设直线l的方程为x=my+1,消去x,得y2-4my-4=0. 设A,B两点的坐标分别为A(x1,y1),B(x2,y2), 线段AB中点的纵坐标为-1,==-1,解得m=-直线l的方程为x=-y+1,即2x+y-2=0.  2.解: 3.解:4.解: 5.解:(1)因为直线x-y+m=0不过原点,所以m≠0.x-y+m=0与=1联立,消去y,得4x2+2mx+m2-4=0.因为直线与椭圆有两个不同的公共点A,B,所以Δ=8m2-16(m2-4)>0,所以-2<m<2.故实数m的取值所组成的集合M为(-2,0)(0,2).(2)假设存在定点P(x0,y0)使得任意的mM,都有直线PA,PB的倾斜角互补,即kPA+kPB=0.令A(x1x1+m),B(x2x2+m),则=0,整理得2x1x2+(m-x0-y0)(x1+x2)+2x0(y0-m)=0.(*)由(1)知x1+x2=-,x1x2=代入(*)式化简得m+2(x0y0)=0,则解得所以定点P的坐标为(1,)或(-1,-).经检验,此两点均满足题意.故存在定点P使得任意的mM,都有直线PA,PB的倾斜角互补,且定点P的坐标为(1,)或(-1,-).  6.解:(1)由题意知2c=4,即c=2,则椭圆C的方程为=1,因为点P在椭圆C上,所以=1,解得a2=5或a2=(舍去),所以椭圆C的方程为+y2=1.(2)设A(x1,y1),B(x2,y2),x1≠x2且x1+x2≠0,由=得D(x1+x2,y1+y2),所以直线AB的斜率kAB=,直线OD的斜率kOD=(x1+x2)(x1-x2)+(y1+y2)(y1-y2)=0,·=-所以kAB·kOD=-.故直线AB的斜率与OD的斜率的乘积为定值-.  7.解:(1)由题意得A(-a,0),B(0,b),可设P(c,t)(t>0),=1,得t=,即P由ABOP得=,即b=c,a2=b2+c2=2b2又|AB|=2a2+b2=12,①②得a2=8,b2=4,椭圆C的方程为=1.(2)假设存在D(m,0),使得直线QA与QD的斜率乘积恒为-设Q(x0,y0)(y0≠0),则=1,kQA·kQD=-,A(-2,0),·=-(x0≠m),③④得(m-2)x02m-8=0,即解得m=2存在点D(2,0),使得kQA·kQD=-.  8.解:(1)由题意得F(1,0),l的方程为y=k(x-1)(k>0).设A(x1,y1),B(x2,y2),得k2x2-(2k2+4)x+k2=0.Δ=16k2+16>0,故x1+x2=.所以|AB|=|AF|+|BF|=(x1+1)+(x2+1)=.由题设知=8,解得k=1或k=-1(舍去).因此l的方程为y=x-1.(2)由(1)得AB的中点坐标为(3,2),所以AB的垂直平分线方程为y-2=-(x-3),即y=-x+5.设所求圆的圆心坐标为(x0,y0),解得因此所求圆的方程为(x-3)2+(y-2)2=16或(x-11)2+(y+6)2=144.   

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map