2020年华东师大版八年级数学上册 期末复习检测卷六(含答案)
展开2020年华东师大版八年级数学上册 期末复习检测卷六
一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入括号内
1.﹣1的相反数是( )
A.1 B. C. D.
2.下列运算正确的是( )
A.3a•4a=12a B.(a3)2=a6
C.(﹣2a)3=﹣2a3 D.a12÷a3=a4
3.估计的值在( )
A.4和5之间 B.5和6之间 C.6和7之间 D.7和8之间
4.八年级某班40名学生的数学测试成绩分为5组,第1﹣4组的频数分别为12,10,6,8,则第5组的频率是( )
A.0.1 B.0.2 C.0.3 D.0.4
5.用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是( )
A.(SAS) B.(SSS) C.(ASA) D.(AAS)
6.某校学生参加体育兴趣小组情况的统计图如图所示,若参加人数最少的小组有25人,则参加人数最多的小组有( )
A.25人 B.35人 C.40人 D.100人
7.若x2+kx+25是完全平方式,则k的值是( )
A.﹣10 B.10 C.5 D.10或﹣10
8.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为( )
A.0.7米 B.1.5米 C.2.2米 D.2.4米
9.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若(a+b)2=21,大正方形的面积为13,则小正方形的面积为( )
A.3 B.4 C.5 D.6
10.园丁住宅小区有一块草坪如图所示.已知AB=3米,BC=4米,CD=12米,DA=13米,且AB⊥BC,这块草坪的面积是( )
A.24米2 B.36米2 C.48米2 D.72米2
二、填空题(每小题3分,共15分)
11.计算: = .
12.把命题“角平分线上的点到这个角两边的距离相等”改写成“如果…,那么…、”的形式:如果 ,那么 .
13.为说明命题“如果a>b,那么”是假命题,你举出的反例是 .
14.如图,在△ABC中,按以下步骤作图:
①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于M,N两点;
②作直线MN交AB于点D,连接CD,若CD=AC,∠B=25°,则∠ACB的度数为 .
15.如图,有一个直角三角形ABC,∠C=90°,AC=10,BC=5,一条线段PQ=AB,P、Q两点分别在AC和过点A且垂直于 AC的射线AX上运动,当AP= 时,才能使△ABC与△QPA全等.
三、解答题(8+9+9+9+9+10+10+11=75)
16.(8分)四个数a,b,c,d排列成,我们称之为二阶行列式,规定它的运算法则为=ad﹣bc,若=12,求x值.
17.(9分)先化简,再求值:(2a﹣1)2﹣2(a+1)(a﹣1)﹣a(a﹣2),其中1﹣a2+2a=0.
18.(9分)某商场对一种新售的手机进行市场问卷调查,其中一个项目是让每个人按A(不喜欢)、B(一般)、C(不比较喜欢)、D(非常喜欢)四个等级对该手机进行评价,图①和图②是该商场采集数据后,绘制的两幅不完整的统计图,请你根据以上统计图提供的信息,回答下列问题:
(1)本次调查的人数为多少人?A等级的人数是多少?请在图中补全条形统计图.
(2)图①中,a等于多少?D等级所占的圆心角为多少度?
19.(9分)(1)计算:(a﹣b)(a2+ab+b2)
(2)利用所学知识以及(1)所得等式,分解因式:m3﹣n3﹣3mn(m﹣n)
20.(9分)如图,点C,F,E,B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论.
21.(10分)已知,如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.
(1)求证:△ACE≌△BCD;
(2)求证:2CD2=AD2+DB2.
22.(10分)(1)问题发现
如图①,△ABC和△AED都是等腰直角三角形,∠BAC=∠EAD=90°,点B在线段AE上,点C在线段AD上,请直接写出线段BE与线段CD的数量关系: ;
(2)操作探究
如图②,将图①中的△ABC绕点A顺时针旋转,旋转角为α(0<α<360),请判断线段BE与线段CD的数量关系,并说明理由.
23.(11分)如图,在长方形ABCD中,AB:BC=3:4,AC=5,点P从点A出发,以每秒1个单位的速度,沿△ABC边A→B→C→A的方向运动,运动时间为t秒.
(1)求AB与BC的长;
(2)在点P的运动过程中,是否存在这样的点P,使△CDP为等腰三角形?若存在,求出t值;若不存在,说明理由.
参考答案
1.A.
2.B.
3.C.
4.A.
5.B.
6.C.
7.D.
8.C.
9.C.
10.B.
11.答案为:﹣3.
12.解:如果一个点在角平分线上,那么它到角两边的距离相等.
13.填当a=2,b=1时,a>b,但.
14.答案为:105°.
15.答案为:5或10.
16.解:∵ =12,∴(x+3)2﹣(x﹣3)2=12,解得,x=1.
17.解:原式=4a2﹣4a+1﹣2a2+2﹣a2+2a=a2﹣2a+3,
因为1﹣a2+2a=0,所以a2﹣2a=1,则原式=3+1=4.
18.解:(1)根据题意得:46÷23%=200(人),A等级的人数为200﹣(46+70+64)=20(人),
补全条形统计图,如图所示:
(2)由题意得:a%=,即a=10;D等级占的圆心角度数为32%×360°=115.2°.
19.解.(1)原式=a3+a2b+ab2﹣a2b﹣ab2﹣b3=a3﹣b3
(2)原式=(m﹣n)(m2+mn+n2)﹣3mn(m﹣n)=(m﹣n)(m2﹣2mn+n2)=(m﹣n)3
20.解:CD∥AB,CD=AB,
理由是:∵CE=BF,
∴CE﹣EF=BF﹣EF,
∴CF=BE,
在△AEB和△CFD中,
,
∴△AEB≌△CFD(SAS),
∴CD=AB,∠C=∠B,
∴CD∥AB.
21.证明:(1)∵△ABC和△ECD都是等腰直角三角形,
∴AC=BC,CD=CE,
∵∠ACB=∠DCE=90°,
∴∠ACE+∠ACD=∠BCD+∠ACD,
∴∠ACE=∠BCD,
在△ACE和△BCD中,
,
∴△AEC≌△BDC(SAS);
(2)∵△ACB是等腰直角三角形,
∴∠B=∠BAC=45度.
∵△ACE≌△BCD,
∴∠B=∠CAE=45°
∴∠DAE=∠CAE+∠BAC=45°+45°=90°,
∴AD2+AE2=DE2.
由(1)知AE=DB,
∴AD2+DB2=DE2,即2CD2=AD2+DB2.
22.解:(1)BE=CD,理由如下;
∵△ABC和△AED都是等腰直角三角形,∠BAC=∠EAD=90°,
∴AB=AC,AE=AD,
∴AE﹣AB=AD﹣AC,
∴BE=CD;
故答案为:BE=CD.
(2)∵△ABC和△AED都是等腰直角三角形,∠BAC=∠EAD=90°,
∴AB=AC,AE=AD,
由旋转的性质得,∠BAE=∠CAD,
在△BAE与△CAD中,,
∴△BAE≌△CAD(SAS)
∴BE=CD.
23.解:(1)设AB=3x,BC=4x
在Rt△ABC中,AB2+BC2=AC2,
∴AC=5x,5x=5,x=1
∴AB=3,BC=4,
(2)存在点P,使△CDP是等腰三角形,理由如下:
当P1D=P1C即P为对角线AC中点时,△CDP是等腰三角形,
∵AB=3,BC=4,
∴,∴,∴(秒)
当CD=P2C时,△CDP是等腰三角形,∴(秒),
AB的中点也是,此时t=1.5;
CP=CD,P在BC线段上,此时,t=4;
DP=DC,P在线段AC上,此时t=10.6;
综上可知当t=9.5秒或10秒或1.5秒或4秒或10.6秒时△CDP是等腰三角形.